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Abstract: This paper presents a method designed to build species-tailored diatom–environment models. Using a prun-
ing algorithm of artificial neural networks, powerful species-tailored models constrained to water temperature, water
depth, and dissolved organic carbon were developed from a 109-lake training set from northwestern Canada and
Alaska. The reasoning behind the approach is that the implementation of a single, gradient-based, organism–
environment relationship should only use species that are comprehensively influenced by the variable of interest. By
pruning species according to their relevance to each of the three studied variables, the cross-validated performances of
all three models were significantly increased, suggesting that nonrelevant species have corrupting influences and need
to be removed. The removal of corrupting species also suggests that palaeolimnological transfer functions based on an
appropriate subset of useful species are more independent.

Résumé : Nous présentons une méthode pour construire des modèles diatomées–environnement basés sur les espèces.
À l’aide d’un algorithme d’élagage tiré des réseaux neuraux artificiels, nous avons mis au point des modèles basés sur
les espèces avec une contrainte pour la température de l’eau, la profondeur et la concentration de carbone organique
dissous à partir d’une série expérimentale de données sur 109 lacs du nord-ouest canadien et de l’Alaska. Le raisonne-
ment qui sous-tend la méthode est que l’établissement d’une relation particulière organisme–environnement basée sur
un gradient ne devrait utiliser que des espèces qui sont influencées de façon globale par la variable considérée. Par
l’élagage des espèces d’après leur pertinence vis-à-vis chacune des trois variables étudiées, les performances des trois
modèles déterminées par validation croisée sont significativement améliorées, ce qui indique que les espèces non perti-
nentes ont une influence nuisible et doivent être retirées. Le retrait des espèces nuisibles indique aussi que les fonc-
tions de transfert paléolimnologiques basées sur un sous-ensemble approprié d’espèces utiles sont plus indépendantes.

[Traduit par la Rédaction] Racca et al. 2454

Introduction

Transfer functions that quantify the modern relationships
between the composition of diatom assemblages and envi-
ronmental variables for a set of lakes are routinely used in
palaeolimnological studies to infer quantitative environmen-
tal changes from past diatom assemblage data. Several methods,
based on different algorithm types, have been successfully
applied to model the complex relationships between taxon
assemblages and environmental variables: weighted averag-
ing regression – calibration based approach (ter Braak and
van Dam 1989; Birks et al. 1990), weighted averaging par-
tial least-squares regression (ter Braak and Juggins 1993),
maximum likelihood based approach (ter Braak and van
Dam 1989; ter Braak et al. 1993), full probability based ap-
proach (Bayesian modeling) (Ellison 1996; Toivonen et al.
2001; Vasko et al. 2000), and artificial neural networks
based approach (Racca et al. 2001; Köster et al. 2004).

While it is clear that the predictive ability of any of these
methods depends ultimately on the degree to which the dis-
tribution of the biota assemblages is actually determined by
environmental characteristics, it is also affected by the sam-
pling characteristics of the modern data set (distributions
and ranges of the environmental variables, number of sam-
ples, number of taxa, amount of noise, etc.) (Racca and Prai-
rie 2004). Because relationships between the composition of
species assemblages and environmental variables are ex-
tracted from a restricted set of lakes, the predictive ability of
a particular model is necessarily dependent on the choice of
lakes included in the training set. In general, modern train-
ing sets are designed either to be as encompassing as possi-
ble or to focus on a predetermined environmental gradient.
Thus, depending on the subsequent use of a model, lakes in
a training set are first chosen to cover a large range of the
environmental variable of interest but also to cover a small
range of other variables. With such a design, it is expected
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that the variation in assemblage data will be attributed prin-
cipally to the changes in the environmental variable of inter-
est. Also, it is expected that the effects of other variables
will have little impact on the variation in the assemblage
data. As a result, diatom transfer functions based on such
optimal training sets generally exhibit good predictive power
(e.g., Fallu and Pienitz 1999), whereas models based on
more limnologically diverse lakes, where variation in spe-
cies assemblages can be influenced by several environmen-
tal gradients, exhibit generally lower predictive power (e.g.,
Philibert and Prairie 2002).

In this study, we suggest that much more powerful models
can be developed from a less optimal training set design.
Here, we apply a method to build optimal subtraining sets
from an existing nonoptimal full training set. In contrast
with the aforementioned design where the training set is
constructed based on a choice of lakes, the proposed method
deals with the selection of taxa according to their relative
contribution in a model. We hypothesize that most of the
complexity in a training set, which can be attributed either to
the effect of the multiple environmental influences on as-
semblage data in limnologically diverse lakes or to stochas-
tic variability within the data set, could be better constrained
if only species whose distribution is comprehensively de-
pendent on the variable being studied are included in a train-
ing set.

To test this idea, we developed three diatom-based train-
ing sets constrained to (i) water temperature, (ii) water
depth, and (iii) dissolved organic carbon (DOC) from an
original training set where the lakes spanned a wide range in
all of these three gradients resulting from the combination of
two diatom-training sets from northwestern Canada and
Alaska (Pienitz et al. 1995; Gregory-Eaves et al. 1999). The
main objective of the study was to show that the predictive
ability of a model can be increased when it is species tai-
lored to a particular variable (i.e., when only the subset of
species whose distribution and abundance are comprehen-
sively related to the environmental variable is used).

Materials and methods

Study area
The extended modern training set of 109 lakes used in this

study results from the combination of a 58-lake training set
from the Yukon and the Northwest Territories (Pienitz et al.
1995) and a 51-lake training set from Alaska (Gregory-
Eaves et al. 1999) (Fig. 1). The 58 lakes from the Yukon and
the Northwest Territories are located between Whitehorse
and Tuktoyaktuk ranging from 60°37′N to 69°35′N and
from 132°04′W to 138°22′W. The locations of the 51 Alas-
kan lakes range from 60°28′N to 69°35′N and from
141°38′W to 150°49′W. Details of the limnological, physio-
graphic, and geological features for each training set are re-
ported in Pienitz et al. (1995, 1997) and Gregory-Eaves et al.
(1999). The lakes of each training set were chosen to span a
broad north–south climatic gradient, but by combining the
two sets, a fairly large east–west gradient is also captured.
Combining the two data sets enlarges the ranges of several
limnologically and nonlimnologically associated variables.
We summarize the ranges covered by lake-related variables
for the 109 training set sites in Table 1.

Sample collection
Sample collection in the field and measurements of re-

lated environmental variables (water temperature, water
depth, pH, conductivity, and water transparency) were done
in the summers of 1990 and 1996 for the Yukon and Alaskan
training sets, respectively. Laboratory analyses of nutrients,
major ions, and trace metals were performed by the National
Water Research Institute (Burlington, Ontario) following
standard methods. Full details of field sampling methods,
water chemistry, and other analyses are provided in Pienitz
et al. (1995, 1997) and Gregory-Eaves et al. (1999, 2000).

Diatom slides were prepared by treating surface sediment
samples of each site using standard methods (Pienitz et al.
1995). Identification and enumeration of diatom valves were
done along random transects under oil immersion using light
microscopy. For each slide, between 300 and 500 diatom
valves were identified to the lowest taxonomic level using
primarily the following taxonomic sources: Krammer and
Lange-Bertalot (1986–1991), Foged (1981), Patrick and
Reimer (1966, 1975), Cumming et al. (1995), Camburn et al.
(1984–1986), and Fallu et al. (2000). The harmonization of
species identification between the two training sets was
made on multiple occasions during several diatom taxo-
nomic workshops (e.g., Arctic and Antarctic Diatom Work-
shop (5th), 1995, unpublished report, Queen’s University,
Kingston, Ontario). A total of 545 diatom species were iden-
tified in the 109 surface samples but only 259, with a rela-
tive abundance of 1% in at least three samples, were used
for the analyses. Details regarding these species can be
found in Appendix A.

Numerical analyses

Artificial neural networks transfer functions
Although the ecological response curve of all species in

regard to one environmental gradient is often assumed to be
unimodal, a mixture of different response curves is often ob-
served in palaeolimnological training data sets (e.g.,
unimodal, skewed unimodal, sigmoidal increasing, or
sigmoidal decreasing) (Birks 1998). We used artificial neural
networks to implement the transfer functions because artifi-
cial neural networks are capable of accommodating the full
range of species response curves (Leshno et al. 1993). So-
called multilayer perceptrons, one type of network architec-
ture trained with a back-propagation algorithm (Rumelhart
et al. 1986), have been successfully applied in quantitative
palaeolimnology (Racca et al. 2001; Philibert et al. 2003;
Köster et al. 2004) and palaeoceanography (Malmgren and
Nordlund 1997; Peyron and De Vernal 2001). Here, the
same network architecture is used. In this type of network,
neurons are arranged in a distinct layered topology: one in-
put layer (representing independent variables (species)), one
hidden layer, and one output layer (representing dependent
variables (environmental variables)). All neurons from one
layer are connected to all neurons in the adjacent layers and
all of these connections have a weight that represents the pa-
rameters of the network. By back-propagation (iterative pro-
cess), the weights of the connections are adjusted by feeding
a set of input–output pattern pairs many times. As a result of
these weight adjustments, internal hidden neurons, which are
not part of the input or output, come to represent important
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features of the task domain and the relationship between in-
put and output is captured by the interactions of these units.
This relationship (function) can then be used to predict new
output (i.e., values of environmental variables) from new in-
put data (i.e., species assemblages). Background information
on neural networks is available in various introductory text-
books such as Bishop (1995) and more details of this meth-
odology as applied to palaeolimnology can be found in
Racca et al. (2001).

Building constrained training set based transfer functions
To build optimal subtraining sets, we used the skeletoni-

zation pruning algorithm of artificial neural networks (Moser
and Smolensky 1989). Pruning algorithms (e.g., Reed 1993)
are comparable with backward elimination in regression
models. Backward elimination starts with all independent
variables and sequentially removes the least relevant one and
stops if the model performance drops below a given thresh-
old by the removal of any of the remaining independent vari-
ables. The skeletonization algorithm was already applied to
estimate the functionality of individual species in the Sur-
face Water Acidification Program training data set (Birks et
al. 1990) with the objective of removing nonrelevant and re-
dundant species from a pH model (Racca et al. 2003). Using
skeletonization, the relevance of one species (i.e., its relative

contribution) is determined as an estimation of the change in
the model error (i.e., root mean square error, RMSE) when
this species is omitted: the more the model error increases,
the more a species is relevant and vice versa. The estimated
relevance can, therefore, be viewed as a direct measure of
the numerical importance of each species in the model and
can be used to remove species according to their relative
contribution.

Here, we used the skeletonization method to prune dia-
toms according to their contribution to water temperature,
water depth, and DOC. Pruning routines were applied until
optimal constrained sets of species were reached. This in-
volves consecutive and alternative steps of training–pruning
simulation, as skeletonization pruning is a dynamic proce-
dure. Details of the skeletonization–pruning algorithm used
in this study can be found in Racca et al. (2003).

Pruning procedures and model validation
The same pruning parameter setup was applied to each

simulation: from the initial full data set, noncontributing
species were removed (one by one) according to their
numerical importance until the removal of one species in-
creased the model error over a fixed criterion. For each train-
ing–pruning simulation, species removal begins when the
model has converged (i.e., when the error remains quasi-
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Fig. 1. Map of study sites showing the position of the 51 Alaskan and 58 Yukon calibration lakes. Inset shows the location in North
America.
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constant even after iterations are added) and species removal
is stopped when the error increases by 10% over the error at
the starting point of pruning. This procedure was repeated as
long as the training–pruning simulations were possible (i.e.,
a new training–pruning simulation was applied to reduced
data sets until no retraining iteration after a species deletion
could lower the error below the threshold necessary to end
pruning). We kept this threshold quite low (10% over the
RMSE at the starting point) so as to ensure that the removal
steps were small (i.e., where few species are removed at
each step instead of only one or two training–pruning simu-
lations where many species are removed). Moreover,
the number of iterations for the retraining phase of each
training–pruning simulation was kept low (20) for the same
reason (i.e., the longer is the retraining phase, the better the
model error converges and more species are removed at each
training–pruning simulation). Although several pruning pa-
rameter configurations could be used, our experience is that
the order of species removal is not dramatically changed.
Ultimately, only the number of pruned species can be modi-
fied by the pruning parameter configuration. The pruning
procedures were performed using Stuttgart Neural Network
Simulator v4.2 (Zell et al. 1996).

However, because skeletonization pruning of species is
based on the change of the apparent error function (i.e., ap-
parent RMSE), a validation of the pruned model was made
using a standard back-propagation model with cross-validation
based on leave-one-out jackknifing. It is this cross-validated
error term that we ultimately seek to improve by tailoring
the transfer function (i.e., by pruning out the species judged
irrelevant for the particular variable modeled). For this pur-
pose, the same methodology as proposed in Racca et al.
(2001, 2003) was applied using a cross-validation routine
(CROSVAL) (R. Racca, Département des Sciences,
Université de Nouvelle Calédonie, BP 4477, 98847 Noumea
CEDEX, Nouvelle-Calédonie, unpublished program) of
YANNS (Boné et al. 1998).

Results

Data set characteristics
Because of the strong latitudinal gradient covered by both

training sets, several distinctive changes in diatom assem-
blage composition were apparent between the boreal forest
sites in the south and the arctic tundra sites in the north
(Pienitz et al. 1995; Gregory-Eaves et al. 1999). Here, to
explore the similarities or dissimilarities in the diatom as-
semblages between the two training sets, a detrended corre-
spondence analysis grouping all (259) species was carried
out. The detrended correspondence analysis shows a clear
distinction between species assemblages from the 58 lakes
in the Yukon data set and the 51 lakes in the Alaskan data
set (Fig. 2). The percentage of cumulative variance captured
by the first two axes is 11.4% of the species data. The first
two axes of the detrended correspondence analysis are sig-
nificant according to Monte Carlo permutation tests (with
199 unrestricted permutations, p ≤ 0.05).

A detrended canonical correspondence analysis was car-
ried out (Fig. 3) to test if the dissimilarity between the
diatom assemblages can be explained by environmental dif-
ferences between the two regions. Only if the variables that

cover different ranges in the two regions explain a great pro-
portion of species variation we can ensure that assemblage
dissimilarity is due to these environmental variables.
The percentage of cumulative variance in the species–
environment relationship captured by the first two detrended
canonical correspondence analysis axes is 35.45%, with
eigenvalues of 0.284 for axis 1 and 0.157 for axis 2. All ca-
nonical axes are significant according to Monte Carlo per-
mutation tests (with 199 unrestricted permutations, p =
0.018). In the detrended canonical correspondence analysis
plot, ordination of the lakes on the first axis shows a separa-
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Fig. 2. Detrended correspondence analysis (DCA) plot showing
diatom assemblage dissimilarities between Alaskan and Yukon
lakes. Solid circles represent lakes from the Yukon and North-
west Territories, and open circles represent Alaskan lakes.

Fig. 3. Detrended canonical correspondence analysis (DCCA)
plot of the 109-lake data set. Solid circles represent lakes from
the Yukon and Northwest Territories, and open circles represent
Alaskan lakes. TEMP, water temperature; DEPTH, water depth;
TPU, total phosphorus unfiltered; TKN: total Kjeldahl nitrogen;
COND, conductivity; DOC, dissolved organic carbon; DIC, dis-
solved inorganic carbon.



tion between Yukon and Alaskan lakes. From the relative
position of the lakes in the environmental space, it is clear
that species assemblages in Alaska are generally associated
with more DOC-rich and more high-altitude conditions than
species assemblages in the Yukon and Northwest Territories.

Initial training set based transfer functions
From the initial training set of 259 species and 109 sites,

diatom – artificial neural networks based models for water
temperature, water depth, and DOC were built. We present
plots of observed values versus predicted values (Figs. 4a–
4c). The predictive power of each model is low as expressed
here as the relative measure of relationship strength (r2 jack-
knife) between the predicted and observed values. The abso-
lute measures of uncertainty associated with the predictions
(i.e., the RMSE of prediction (RMSEP)) of each model are
approximately twice those generally obtained in other stud-
ies of diatom-based water temperature, water depth, and
DOC models (e.g., Pienitz et al. 1995; Fallu and Pienitz
1999; Gregory-Eaves et al. 1999). Moreover, the relation-
ships between observed and predicted values are not linear
for either the water temperature model or the DOC model,
suggesting that these models are strongly biased.

Constrained training set based transfer functions
More optimal training sets were obtained by pruning the

initial full species data set (259) according to the contribu-
tion of the diatom species to the performance of either the
water temperature, water depth, or DOC model. By using the
skeletonization algorithm until the “apparent” performances
(RMSE) of the models increased over 10% from the mini-
mum, the species-tailoring procedure reduced the initial data
set by 65.4% (260 to 90 species) for the water temperature
based model, 59.6% (259 to 105) for the water depth based
model, and 49.2% (259 to 132) for the DOC-based model.
Species composition of the three subtraining sets is shown in
Appendix A. Only 24 species (9.2% of the initial full train-
ing set) are common to all three tailored sets. Forty-seven
species (18.1%) are common to the water temperature and
water depth training sets, 50 species (19.2%) to the water
temperature and DOC sets, and 55 species (21.1%) to the
water depth and DOC models. That the pruning algorithm
selects different groups of species indicates that the relative
importance of several species to the apparent statistics of a
model is critically dependent on the environmental variable
considered. Nevertheless, the question remains as to what
extent each group of species can be used to improve the pre-
dictions of the environmental variable for which they were
selected. In other words, how does the exclusion of species
improve the cross-validated predictive performances of the
models? To answer this question, we built cross-validated
(leave-one-out jackknifing) models for each of the three en-
vironmental variables using their corresponding subtraining
set (plots of observed versus predicted values are presented
in Figs. 4d–4f). The predictive power of each pruned train-
ing set based model is improved when compared with the
corresponding initial training set based models (Figs. 4d–4f).
The strength (r2 jackknife) of the relationship between the
predicted and observed values increased from 0.34 to 0.68
for water temperature, from 0.60 to 0.77 for water depth,
and from 0.33 to 0.67 for DOC. This leads to a decrease in

the absolute measure of uncertainty associated with the pre-
dictions of each model. The improvement in predictive
power of each constrained model is statistically significant
(F = 1.92, 1.7, and 1.79; p = 0.0074) for temperature, depth,
and DOC, respectively.

Discussion

Species selection and model improvement
The proposed environmentally dependent pruning method

used here allowed us to build tailored training sets for dia-
tom-based water temperature, water depth, and DOC mod-
els. The constrained training sets were built separately from
the initial training set according to the relative contribution
of each species to each of the three variables studied. By re-
moving noncontributing species, the predictive power of the
models increased significantly in all three cases, suggesting
that pruning is an efficient method for improving model per-
formance. Indirectly, these results also imply that the species
that were removed by the pruning method were in fact cor-
rupting the models based on all species. Moreover, the spe-
cies removal also improved the prediction characteristics of
the models. For example, when all species were included in
the water temperature model, the predictions never exceeded
20 °C, while the predictions were very close to the observa-
tions (up to 24 °C) when only the species that seemed to be
useful to model water temperature were included. Clearly,
the removal of noncontributing species is beneficial, both to
improve prediction power and to reduce model bias.

Our results clearly demonstrate that the assumption that
all species are ecologically relevant and therefore contribute
to the accuracy of the prediction is questionable. Neverthe-
less, the question of how the noncontributing species affect
the model remains difficult: are noncontributing species sim-
ply a source of random noise or is there a more complex
coupling between the species and their environment? By
analogy with simple modeling techniques such as multiple
regression, the inclusion of species that carry no information
about their environment should not negatively affect perfor-
mance of a model: the modeling procedure should normally
simply ignore them by assigning them very little weight.
However, because species removal actually improved model
performance, our results suggest that these species had a
genuinely corrupting influence. In our view, this is most
likely conceivable for species that are multiply determined
(i.e., for species that are strongly influenced by more than
one environmental gradient). Unless these influencing gradi-
ents are always correlated to the same extent and in the same
way, no modeling technique can reasonably cope with possi-
bly conflicting environmental signals.

While these multiply determined species are probably an
important source of model corruption, there may also be
other ways by which variations in the abundance of certain
species actually confound a model. For example, there may
be several alternative stable species assemblages for a given
lake driven by interspecific relationships among the diatoms.
As such, these types of relationships are never considered in
model building, although they are likely to occur in nature.
However, we know of no method that is able to assess the
relative importance of these confounding influences. To this
extent, the question of how noncontributing species affect
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Fig. 4. Plots of observed against jackknife-predicted values for the water temperature model, water depth model, and DOC model (a–c)
when all species are used and (d–f) when pruned training sets are used. The jackknife-predicted values are based on a validation set
(leave-one-out). Fitted lines are based on model I regression. Solid circles represent lakes from the Yukon and Northwest Territories,
and open circles represent Alaskan lakes.



the predictive capacities of a model remains open. Until
such a question can be addressed, we argue that the best
palaeolimnological models will be those tailored only with
the appropriate species (i.e., those that are useful in a predic-
tive sense). In this context, pruned models for water temper-
ature, water depth, and DOC do not necessarily contain
species that are exclusively influenced by only one of these
variables. Indeed, a species that is multiply determined can
still be useful if at least some of the information that it car-
ries can, in some sense, be generalized. This appears to be
the case for all species that are common to all tailored train-
ing sets (9.2% of the species in our case). Conversely, the
species that are multiply influenced but for which no gener-
alization can be achieved will necessarily be eliminated by
the pruning algorithm.

Toward independent transfer functions
That noncontributing species can corrupt the empirical

predictive power of the models suggests that any changes in
the distribution and abundance of these species in the past
could affect their reconstruction capabilities. This is an im-
portant lacunae of unpruned models. Because the distribu-
tion and abundance of these noncontributing and possibly
corrupting species may be strongly influenced by several
variables (physical, chemical, and (or) biological) character-
istic of the lake system, changes in any of these environmen-
tal parameters will alter their abundance. Thus, we could
wrongfully infer changes in the variable of interest even if it
remained unchanged. Because of this, we suggest that the re-
moval of noncontributing taxa can potentially reduce the ef-
fects of other environmental influences. We contend that
tailored models are probably less sensitive than others and
more independent because they are specifically designed to
quantify the changes of one environmental variable using
only species that respond to this variable in a way that can
be generalized.

Until now, the effects of multiple influence and interaction
of environmental gradients (correlated or not) on species as-
semblages were only partially addressed in the design phase
of palaeolimnological studies by selecting lakes to be in-
cluded in the training set (S. Hausmann and F. Kienast,
Paleolimnology–Paleoecology Laboratory, Centre d’Études
Nordiques, Département de Géographie, Université Laval,
Québec, QC G1K 7P4, Canada, unpublished data). However,
while a preselection is often possible in certain regions,
mainly for those where information on lakes is easy to ob-
tain before sampling, sampling is limited and logistically
difficult and expensive, for example, in remote northern re-
gions. In these regions, controlling the number of influenc-
ing variables by reducing the number of sites in an existing
training set is one alternative way to constrain the multiple
environmental influences on species. In this case, a sub-
training set of selected sites is defined in which the environ-
mental variable of interest has the largest range possible but
in which the ranges of secondary variables are also kept nar-
row (S. Hausmann and F. Kienast, unpublished data). How-
ever, this a posteriori selection could be problematic for at
least two reasons. First, the number of sites, often an impor-
tant parameter in the success of the modeling approach,
could end up being too small if many secondary variables
are detected in the original training set. Second, and more

importantly, a model based on such a “site-selected” training
set where few situations of interaction and (or) multiple in-
fluences are structuring the species data would be incapable
of implementing these situations. As a result, such models
will perform poorly when applied to down-core species data
if interactions and (or) multiple influences occurred in the
past. This second problem is also relevant to models based
on modern training sets where an a priori selection of sites is
made to avoid the effects of secondary gradients.

Ideally, the implementation of every organism–
environment relationship should be based on modern train-
ing sets where situations of multiple influences and (or) in-
teractions structure species assemblages: only a model that
has the possibility of “learning” from multivariate patterns
will have the potential to give realistic inferences when ap-
plied to multiply induced past assemblage data. Thus, the
more examples of similar situations of multiple influences or
interactions occur in a training set, the more a model will be
capable of implementing these situations. However, if a
model is not able to learn from some situations because too
few examples of these occur in a given training set, then
these situations need to be avoided. Therefore, we suggest
that more effort should be made toward the development of
efficient calibration models in which only nongeneralized
situations of multiple influences and interactions are avoided
(i.e., like our pruning algorithm do) rather than toward the
development of calibration models in which all situations of
multiple influence or interaction (i.e., generalizable and not)
are avoided (i.e., like in methods based on a priori or a pos-
teriori selection of sites). In other words, more attention
should be given to build efficient univariate-based models
from a multivariate organism–environment relationships
training set rather than attempting to build univariate models
from a pseudo-univariate organism–environment relation-
ships training set. To be efficient, an appropriate univariate
model (based on multivariate relationships) should be capa-
ble of reaching the two following goals. First, the model
should have the ability to implement only the generalizable
relationships between assemblage data and each structuring
environmental variable (i.e., where species that suffer from
nongeneralizable multivariate interaction are excluded). Sec-
ond, it should have the capacity to make independent predic-
tions. The method proposed in this study is designed to
reach these two goals: the selection of species is made to
create an optimal model for a given variable by removing
species whose distributions are independent of the variable
of interest. In addition, by making an environmentally de-
pendent selection of species to be included in a particular
training set, a transfer function based on these species will
be quasi-independent (a certain dependence will occur only
in cases where species are common to several subtraining
sets).

We believe that these observations to be important, as in-
dependent transfer functions are required in situations where
any reconstructed environmental variable may be con-
founded by the influence of other factors. For example, few
researchers have attempted to model water depth because
changes in nutrient concentration and (or) light quality may
or may not covary with lake level fluctuations (Wolin and
Duthie 1999). Similarly, reconstruction of lake depth is
problematic because changes in lake level could be the con-
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sequence of changes in temperature and (or) the result of
changes in relative humidity. The application of our three
quasi-independent diatom transfer functions for reconstruc-
tion of past changes in lake depth, lake water temperature,
and DOC concentration could provide substantial insight
into the magnitude of past climatic and environmental changes
in northwestern Canada and Alaska.

In conclusion, in this study, we have applied a method
that is designed to build tailored palaeolimnological models
in situations were several important environmental variables
structure species data in a training set. In contrast with the
idea of a priori or a posteriori selection of lakes to reduce
secondary gradients, the proposed method deals with the se-
lection of a subset of numerically useful species. The rea-
soning behind the approach is that the implementation of a
single gradient-based organism–environment relationship
should use only species that are comprehensively influenced
by the variable of interest. Such an approach based on taxon
selection appears to be attractive for two reasons. First, the
selection of species is made to create an optimal model for a
given variable by removing taxa with distributions that are
independent of the variable of interest. The resulting tailored
training set can then be used to develop more powerful mod-
els. Second, several quasi-independent models of species–
environment relationships could be developed from the same
original training set because each model will be based on
different subsets of relevant species. Once validated using
other data sets, this method could prove a very useful tool
for developing several tailored transfer functions from the
same modern training set and (or) from training sets where
several environmental variables are important in structuring
species assemblage data.
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Species Occurrence TEMP DEPTH DOC

Fragilaria pinnata 99 Selected Selected Selected
Achnanthes minutissima (tribe) 105 Selected Selected Selected
Fragilaria brevistriata 81 Selected Selected
Cyclotella stelligera 73 Selected Selected
Fragilaria construens var. venter 62 Selected Selected Selected
Fragilaria pinnata (coarse form) 51 Selected Selected
Navicula minima 70
Navicula cryptotenella 71 Selected Selected Selected
Navicula seminulum 61 Selected Selected
Nitzschia fonticola 62 Selected Selected Selected
Fragilaria brevistriata var. papillosa/inflata 66 Selected Selected
Navicula pupula 72 Selected
Amphora pediculus 52 Selected
Achnanthes pusilla 55 Selected Selected
Cymbella microcephala 52 Selected Selected Selected
Cyclotella pseudostelligera 34 Selected
Fragilaria construens 39 Selected Selected
Brachysira vitrea/ Anomoeoneis vitrea 53 Selected Selected
Fragilaria pinnata var. intercedens 41 Selected
Asterionella formosa 33 Selected Selected Selected
Fragilaria construens var. pumila 28 Selected Selected
Navicula vitiosa 42 Selected Selected Selected
Fragilaria capucina var. gracilis 36 Selected Selected Selected
Achnanthes subatomoides 48 Selected
Cyclotella rossii 25 Selected Selected

Table A1. Selected diatom species for the water temperature (TEMP), water depth (DEPTH), and dissolved organic crbon (DOC) models.
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Species Occurrence TEMP DEPTH DOC

Fragilaria pseudoconstruens 32 Selected Selected Selected
Cyclotella tripartita 20 Selected Selected Selected
Achnanthes conspicua 29
Cymbella silesiaca 53 Selected Selected
Fragilaria tenera 26 Selected Selected
Navicula capitata var. hungarica 33 Selected Selected
Fragilaria nanana 22 Selected Selected
Achnanthes suchlandtii 35 Selected
Amphora libyca 43 Selected
Gomphonema parvulum 39 Selected Selected
Navicula disjuncta 32 Selected
Cyclotella michiganiana 20 Selected Selected Selected
Cyclotella cf. ocellata 18 Selected
Fragilaria famelica 21 Selected
Navicula cryptocephala 28 Selected
Cymbella cf. angustata 19 Selected
Cymbella gracilis 27 Selected Selected Selected
Nitzschia perminuta 28 Selected
Aulacoseira subarctica 13 Selected Selected
Cocconeis placentula var. euglypta 24
Achnanthes lanceolata aff. sp. lanceolata 25 Selected Selected
Navicula cryptotenella fo. PISCES 16 Selected Selected
Navicula radiosa 38 Selected Selected
Caloneis bacillum 24 Selected Selected
Pinnularia interrupta/P. biceps 37 Selected
Fragilaria virescens var. exigua 15 Selected
Cocconeis placentula 12
Navicula menisculus 19 Selected Selected Selected
Cyclotella delicatissima 9 Selected Selected Selected
Diploneis oculata 34 Selected
Stauroneis anceps 30 Selected
Stauroneis anceps var. gracilis 17 Selected
Aulacoseira alpigena 10 Selected Selected
Cyclotella bodanica 15 Selected Selected
Cyclotella bodanica var. lemanica 12 Selected Selected Selected
Achnanthes lanceolata ssp. frequentissima 14 Selected
Navicula laevissima 34 Selected
Navicula submuralis 16 Selected
Amphora inariensis 22 Selected Selected
Nitzschia amphibia 16 Selected Selected
Nitzschia palea 24 Selected Selected Selected
Synedra radians 12 Selected
Stauroneis phoenicenteron 20
Navicula absoluta 15 Selected
Navicula digitulus 17 Selected
Navicula schmassmannii 12 Selected Selected
Nitzschia acicularis 20
Aulacoseira distans var. humilis 11 Selected Selected
Aulacoseira distans var. nivalis 6 Selected
Cyclotella comensis 12 Selected
Stephanodiscus alpinus 8 Selected Selected
Tabellaria flocculosa (strain IV) 25
Diatoma tenue var. elongatum 26 Selected
Fragilaria capucina 10 Selected Selected Selected
Fragilaria lapponica 7 Selected
Eunotia incisa 13 Selected Selected
Achnanthes altaica 9

Table A1 (continued).
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Achnanthes curtissima 15 Selected
Achnanthes impexiformis/impexa 14 Selected
Achnanthes laterostrata 18 Selected
Achnanthes marginulata 14 Selected Selected Selected
Gyrosigma spenceri 10
Amphipleura kriegeriana 16 Selected
Navicula disjuncta fo. short (<15 µm) 9 Selected
Navicula elginensis 10 Selected Selected
Navicula indifferens 7 Selected
Navicula mediocris 11
Navicula rhynchocephala 18 Selected
Gomphonema gracile 12
Nitzschia graciliformis 16 Selected Selected
Nitzschia gracilis 20 Selected Selected
Cyclotella atomus 6 Selected
Cyclotella comensis fo. AK 1 10 Selected
Stephanodiscus cf. medius 10 Selected
Stephanodiscus hantzschii 6 Selected Selected
Fragilaria capucina var. rumpens 8
Fragilaria crotonensis 5 Selected
Fragilaria pinnata var. lancettula 8 Selected Selected
Fragilaria robusta/F. pseudoconstruens var. bigibba 13 Selected
Fragilaria vaucheriae 37 Selected Selected Selected
Eunotia intermedia/E. vanheurckii 8 Selected
Achnanthes chlidanos 15
Achnanthes gracillima 6 Selected Selected Selected
Achnanthes levanderi 17 Selected Selected
Diploneis oblongella 13
Neidium ampliatum 19 Selected
Navicula minuscula 16 Selected
Navicula oblonga 5
Navicula pseudoscutiformis 37
Cymbella hebridica 10 Selected Selected
Cymbella incerta 13 Selected
Cymbella perpusilla 8 Selected
Amphora thumensis 8 Selected
Gomphonema minutum 4 Selected Selected
Nitzschia amphibioides 10 Selected Selected
Rhoicosphenia abbreviata 7 Selected Selected
Aulacoseira ambigua 9
Cyclotella rossii fo. AK 1 (tripartita) 8
Stephanodiscus parvus 4 Selected Selected
Tabellaria flocculosa (strain III) 10 Selected Selected
Fragilaria construens var. binodis 10
Eunotia bilunaris 17
Achnanthes clevei 10
Achnanthes microcephala 9 Selected Selected
Achnanthes rosenstockii 5 Selected
Achnanthes scotica 11 Selected Selected
Achnanthes ventralis 17 Selected Selected
Frustulia rhomboides var. crassinervia 7 Selected
Diploneis marginestriata 8 Selected
Stauroneis smithii var. minima 4 Selected
Brachysira brebissonii/Anomoeoneis brachysira 9 Selected Selected
Navicula absoluta fo. 1 12 Selected
Navicula bryophila 15
Navicula cocconeiformis 23

Table A1 (continued).
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Navicula halophila 8 Selected
Navicula jaernefeltii 18 Selected Selected
Navicula modica 10 Selected Selected
Navicula cf. oppugnata 3 Selected
Navicula vitabunda 20 Selected
Caloneis silicula 19 Selected Selected
Pinnularia microstauron 19 Selected Selected
Cymbella naviculiformis 12
Amphora fogediana 15 Selected
Nitzschia dissipata 8
Nitzschia radicula 7 Selected
Nitzschia recta 18 Selected Selected
Epithemia adnata 6 Selected
cf. Achnanthes ricula 8
Aulacoseira italica 3 Selected
Aulacoseira valida 5
Stephanodiscus minutulus 3 Selected Selected
Tabellaria flocculosa (strain I) 19 Selected Selected Selected
Fragilaria cyclopum/Hannaea arcus 12
Fragilaria ulna/S. ulna 11 Selected Selected
Fragilaria delicatissima 7 Selected
Eunotia praerupta 13
Eunotia faba 6
Eunotia rhynchocephala 6 Selected Selected
Achnanthes carissima 8
Achnanthes exigua var. heterovalva 4 Selected
Achnanthes flexella var. alpestris 11 Selected
Achnanthes oestrupii 11
Achnanthes saccula 9
Diploneis elliptica 11 Selected
Stauroneis kriegerii 5 Selected
Navicula arvensis 6 Selected Selected
Navicula jaagii 4 Selected Selected
Navicula lenzii 5 Selected
Navicula leptostriata 7 Selected
Navicula pseudanglica 4 Selected
Navicula pseudoventralis 7 Selected
Navicula seminuloides 4
Navicula subhamulata 4
Navicula subrotundata 11 Selected Selected
Navicula trivialis 8 Selected Selected
Caloneis tenuis 3 Selected
Cymbella amphicephala 14 Selected Selected
Cymbella cf. cesatii 7
Gomphonema angustatum 7 Selected Selected
Gomphonema pumilum 6 Selected
Nitzschia liebtruthii 5 Selected
Nitzschia pura 17
Nitzschia valdestriata 8 Selected
Simonsenia delognei 5 Selected Selected
Denticula tenuis 3
Stenopterobia curvula 3 Selected
cf. Nitzschia bacillum 5 Selected
Tabellaria fenestrata 7 Selected Selected
Diatoma mesodon 4
Fragilaria capucina var. mesolepta 7 Selected Selected
Fragilaria leptostauron 6 Selected Selected Selected

Table A1 (continued).
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Species Occurrence TEMP DEPTH DOC

Fragilaria parasitica 27 Selected Selected
Fragilaria neoproducta 4 Selected Selected
Eunotia flexuosa 5 Selected
Eunotia monodon 4 Selected
Eunotia paludosa 3
Eunotia circumborealis 4
Cocconeis cf. diminuta 3 Selected Selected
Cocconeis neothumensis 7
Cocconeis placentula var. lineata 6
Achnanthes helvetica 3 Selected Selected
Achnanthes didyma 14 Selected Selected
Achnanthes flexella 6 Selected Selected
Achnanthes lacus-vulcani 8 Selected
Achnanthes lineariz 13
Achnanthes petersenii 16 Selected Selected
Achnanthes peragalli 6 Selected
Achnanthes ziegleri 4 Selected
Gyrosigma acuminatum 3 Selected
Amphipleura pellucida 8 Selected Selected
Frustulia rhomboides 3 Selected
Frustulia rhomboides var. saxonica 6 Selected
Diploneis parma/subovalis 11
Stauroneis producta 3
Stauroneis smithii 12
Brachysira zellensis/Anomoeoneis brachysira var. zellensis 5
Brachysira minor 5 Selected Selected
Navicula bacillum 3
Navicula difficillima/arvensis 3 Selected
Navicula explanata 13 Selected Selected
Navicula gerloffii 5
Navicula ignota var. palustris 5 Selected Selected Selected
Navicula laevissima var. perhibita 3 Selected Selected
Navicula libonensis 3 Selected
Navicula medioconvexa 6 Selected Selected
Navicula menisculus fo. AK 1 3 Selected
Navicula pseudolanceolata 5
Navicula similis 5
Navicula soehrensis var. hassiaca 9
Navicula soehrensis 6 Selected Selected
Navicula subtilissima 4 Selected Selected
Navicula salinarum 4
Navicula tuscula 4
Navicula veneta 5 Selected
Pinnularia balfouriana 10
Pinnularia maior 7
Pinnularia nodosa 8 Selected
Pinnularia viridis 9 Selected
Cymbella cistula 9 Selected
Cymbella cymbiformis 6 Selected
Cymbella falaisensis 5 Selected Selected
Cymbella hustedtii 3 Selected
Cymbella incerta var. crassipunctata 5 Selected
Cymbella lapponica fo. short 6 Selected
Cymbella minuta 13 Selected
Gomphonema acuminatum 8 Selected Selected
Gomphonema lateripunctatum 3 Selected Selected
Gomphonema olivaceum 4

Table A1 (continued).
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Nitzschia alpina 9 Selected Selected
Nitzschia rectiformis 8
Nitzschia solita 3 Selected Selected
Nitzschia supralitorea 3
Epithemia sorex 5 Selected
cf. Navicula trivialis 4 Selected

Table A1 (concluded).


