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Separating wheat from chaff: Diatom taxon selection using an artificial
neural network pruning algorithm
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Abstract

This study addresses the question of what diatom taxa to include in a modern calibration set based on their relative
contribution in a palaeolimnological calibration model. Using a pruning algorithm for Artificial Neural Networks
(ANNs) which determines the functionality of individual taxa in terms of model performance, we pruned the
Surface Water Acidification Project (SWAP) pH-diatom data-set until the predictive performance of the pruned set
(as assessed by a jackknifing procedure) was statistically different from the initial full-set. Our results, based on the
validation at each 5% data-set reduction, show that (i) 85% of the taxa can be removed without any effect on the
pH model calibration performance, and (ii) that the complexity and the dimensionality reduction of the model by
the removal of these non-essential or redundant taxa greatly improve the robustness of the calibration. A
comparison between the commonly used ‘‘marginal’’ criteria for inclusion (species tolerance and Hill’s N2) and
our functionality criterion shows that the importance of each taxon in an ANN palaeolimnological model
calibration does not appear to depend on these marginal characteristics.

Introduction grees, transparency as to the way information is
extracted from the assemblage data and implemented

Several types of algorithm have been proposed to in the predictive model. While it is clear that the
develop quantitative inference models in palaeolim- predictive ability of these models can depend on the
nology (Birks 1995): Weighted Averaging regression statistical characteristics of the calibration set (dis-
/calibration (WA) (ter Braak and van Dam 1989; tribution and range of the environmental variable,
Birks et al. 1990), Weighted Averaging Partial Least number of samples, number of taxa, etc.), the model-
Square regression (WA-PLS) (ter Braak and Juggins ling approach is also important to the final success of
1993), Gaussian regression and maximum likelihood the model. Although some methods have been shown
calibration (ter Braak and van Dam 1989; ter Braak et to outperform others in certain conditions (ter Braak
al. 1993; Vasko et al. 2000), and back-propagation and Juggins 1993; ter Braak et al. 1993; ter Braak
(BP) (Rumelhart et al. 1986) of Artificial Neural 1995; Racca et al. 2001), little is known about the
Networks (ANNs) (Racca et al. 2001). All of these inclusion or exclusion of taxa based on their contribu-
methods have inherent but different abilities to model tion to the calibration model. Generally, calibration
the complex relations between taxon assemblages and data-sets are large and sparse and the criterion for
environmental variables and all yield successful pre- taxon inclusion is typically ad hoc (e.g., all taxa with
dictive models. However, they lack, to varying de- 1% relative abundance in at least one sample, present
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in 2 or more samples, 1% abundance in at least two Methods: artificial neural networks
samples, 1% abundance in at least three samples, etc.
(Cameron et al. 1999). Birks (1994) and Wilson et al. The neural network used here is a multi-layers percep-
(1996) discuss the problem of the taxonomic preci- tron trained with a back-propagation algorithm
sion and the optimal size of the modern data-set for (Rumelhart et al. 1986). In this type of network,
the best possible calibration. Based on a series of neurons are arranged in a distinct layered topology:
numerical experiments with WA and WA models, one input layer (representing independent variables),(tol)

they showed that as more taxa with low effective one hidden layer, and one output layer (representing
numbers of occurrence (N2) (Hill 1973; ter Braak dependent variables). All neurons from one layer are
1990) are included in the modern data-set, the predic- connected to all neurons in the adjacent layers and all
tive capacity of the model increases, suggesting that these connections have a weight that represents the
(i) rare taxa contribute some ecological signal to the parameters of the network. By back-propagation
calibration and (ii) Hill’s N2 is directly related to the (learning process), the weights of the connections are
contribution (in terms of predictive performance) of adjusted by feeding a set of input /output pattern pairs
the taxa in these WA-based models. many times. As a result of these weight adjustments,

Here, we suggest that the ‘‘predictive importance’’ internal ‘‘hidden’’ neurons, which are not part of the
of a given taxon in a calibration depends on what input or output, come to represent important features
other taxa are used in the model, and hence on the of the task domain and the relation between input and
extent of species redundancy in the data-set. For output is captured by the interactions of these units.
example, if two taxa with high N2 values have similar This relation (function) can then be used to predict
responses to the environmental variable inferred, the output from the input data. Background information
exclusion of one of them would have less impact on on neural networks is available in various intro-
the calibration than the exclusion of a taxon with a ductory textbooks such as Bishop (1995) and more
different response, even if it had a low N2 value. In details of this methodology as applied to palaeolim-
fact, Hill’s N2 considers each taxon more or less in nology can be found in Racca et al. (2001).
isolation (although relative abundance data are by
definition inter-dependant) and as such it can only be
viewed as an incomplete measure of importance. Experimental design: data-set reduction

In this study, we explore the question of the relative
contribution of diatom taxa in the performance of In order to address the question of the optimal size of
palaeolimnological model calibrations. In contrast a calibration set and therefore the inclusion or exclu-
with the criterion of Hill’s N2 used by Birks (1994) sion of diatom taxa in a quantitative inference model,
and Wilson et al. (1996), we suggest an alternative it is necessary to have some idea of the relative
criterion based strictly on predictive importance. contribution of each taxon in the model’s calibration.
Using the Back-Propagation modelling approach of One method for measuring the relevance r fori

ANNs, we apply a method that (i) estimates the each taxon in the calibration set is: r 5 Ei i without taxoni

relevance of the diatom taxa in the calibration set and 2 E where E is the root mean square errorwith taxoni

(ii) successively reduces the size of the set by exclud- (RMSE) of the model in the calibration set.
ing the least relevant taxa. For this purpose, one form The problem with this method is that the determi-
of an ANN pruning algorithm, Skeletonization nation of which of the N taxa should be included in
(Moser and Smolensky 1989), was used on the Sur- the calibration set would involve the examination of

Nface Waters Acidification Programme (SWAP) 2 possible sets of taxa. Because diatom calibration
diatom-pH calibration set (Birks et al. 1990). The two sets in palaeolimnology contain many taxa, the mea-
major objectives of this study are (i) to reduce the sure of a taxon’s relevance based on the performance
number of taxa contained in the modern data to test of every possible set is not feasible computationally.
whether we can improve the predictive robustness of Consequently, instead of an exhaustive search, we use
the model by reducing overfitting and (ii) to test one form of pruning algorithm of ANNs based on an
whether the relative contribution of taxa in an ANN approximation of the changes in the model error
transfer-function depends on the most commonly function when a given taxon is removed. Pruning
accepted measures of importance in the palaeolim- algorithms (see e.g., Reed (1993)) of ANNs (also
nological literature. called destructive algorithms) are comparable to back-
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ward elimination in regression models (see e.g., SNNS 4.2 (Stuttgart Neural Network Simulator, Zell
Draper and Smith (1981)). Backward elimination et al. (1996)).
starts with all independent variables and sequentially
removes the least relevant one and stops if the model Validation of the reduced models
performance drops below a given threshold by the
removal of any of the remaining independent vari- Because skeletonization pruning of taxa is based on
ables. the change of the error function in the calibration set

(apparent RMSE), after the size reduction of the data-
set, a validation is made using a standard back-propa-

The skeletonization algorithm gation model with cross-validation based on leave-
one-out jackknifing. For this purpose, the same meth-

The skeletonization algorithm (Moser and Smolensky odology as proposed in Racca et al. (2001) was
1989) is used here to estimate the functionality of applied using a cross-validation routine (CROSVAL,
individual taxa in a palaeolimnological calibration Racca, unpublished program) of YANNS (Yet

´model and to remove successively the least important Another Neural Network Simulator, Bone et al.
taxa. It is a sensitivity algorithm that performs train- (1998)).
ing and pruning of ANNs alternately, according to the
following steps:
1. Train iteratively the network using a back-propa- Data-set

gation function to a minimum (for details of the
back-propagation algorithm, see Rumelhart et al. The SWAP diatom-pH data-set used here is the same
(1986), Racca et al. (2001)); as used by Birks et al. (1990) and described by

2. Compute an approximation of the relevance r (for Stevenson et al. (1991) and includes all taxa that are
the performance of the network) of each taxon. present in at least two samples with an abundance of
The approximation is estimated as a first partial 1% or more in at least one sample. The diatom data-
derivative of the error function and this derivative set is summarized in terms of number of samples,
is computed using an error propagation very simi- number of taxa, percentage number of non-zero val-
lar to that used in adjusting the weights with BP; ues (occurrence), the total inertia (variance), the range,

3. Prune the taxon with the smallest estimated rele- mean, and median of the effective number (N2) of
vance r ; taxa per sample and the effective number of occur-i

4. Re-train the network to a minimum again (note that rences (N2) of each taxon. The modern pH values are
after deleting a taxon, the modern values of the summarized in terms of the range, mean, median, and
remaining taxa are not re-expressed, so the input standard deviation (Table 1).
data are always the original relative abundance
values that are used for re-training the network);

5. If the network performance (RMSE) is not higher Results and discussion
than a certain criterion, repeat the procedure from
step 2. Skeletonization pruning and ANN model

performance
Details of the skeletonization algorithm are described
in Moser and Smolensky (1989) and implemented in The SWAP diatom data-set was pruned according to

Table 1. Descriptive statistics for the SWAP diatom-pH data set

Minimum Median Mean Maximum S.D Range

Number of samples 167
Number of taxa 267
% number of positive values in data 18.47
Total inertia 3.39
N2 for samples 5.13 28.58 29.22 57.18
N2 for taxa 1 14.99 23.76 120.86
pH 4.33 5.27 5.56 7.25 0.77 2.92
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the relevance of the diatom taxa to the performance of
the model. Although the algorithm prunes the species
data-set taxon by taxon, taxa were grouped in classes
of importance (each containing 5% of the total taxa).
This is because (i) the order of relevance, and there-
fore of deletion, can be slightly different depending
on the initial parameters of the network and the
pruning process (weight initialization, learning rate,
number of iterations on training and re-training steps)
and because (ii) no validation is made during the
pruning steps (the validation of N new neural net-
works models is extremely time consuming).

The skeletonization algorithm allowed us to reduce
the data-set by 85% (267 to 37 taxa), without sig-
nificantly affecting the model’s performance

2(RMSEP of 0.323 to 0.334, r 0.82 tojackknife jackknife

0.81, F 5 0.93 p . 0.05). This is a remarkable result
given that the literature suggests that all taxa are

Figure 1. Changes in the difference between root mean square errorimportant and should be retained (Birks 1994). The
of estimation (apparent RMSE) and root mean square error of

pruning gave 17 classes of taxa of increasing impor- prediction (RMSEP ) with an increasing number of taxajackknife
tance (Table 2). Interestingly, while the cross-val- removed according to their functionality.
idated model performance remained unchanged (jack-

2knifed r or RMSEP), the species reduction resulted model and any difference between the apparent and
in a significant decrease in the apparent performance cross-validated measures indicates the extent to which
of the calibration set (apparent RMSE of 0.163 to the model overfitted the data. Overfitted models also

20.285, apparent r of 0.96 to 0.86, F 5 2.98 p , have a tendency to reduce the robustness of the
0.005) (Table 2). Figure 1 illustrates how the differ- model, i.e., to be more sensitive to small changes in
ence between the apparent RMSE and RMSEP model input values. This implies that even if thejackknife

decreases with the number of taxa in the training set. removal of many taxa (taxa with redundant infor-
Ideally, the apparent RMSE of any model should be a mation, for example) does not greatly improve or
reliable measure of the actual predictive power of a deteriorate the predictive performance of the model as

Table 2. Summary statistics of the SWAP diatom pH inference models according to the classes of taxa included based on the Skeletonization
procedure

Class of importance Size reduction (%) RMSE RMSEP Mean bias Max bias

0 0.163 0.323 20.030 20.441
1 5 0.174 0.322 20.040 20.467
2 10 0.182 0.323 20.037 20.475
3 15 0.198 0.325 20.039 20.506
4 20 0.199 0.327 20.044 20.498
5 25 0.214 0.328 20.047 20.512
6 30 0.215 0.325 20.043 20.509
7 35 0.213 0.326 20.042 20.511
8 40 0.218 0.324 20.037 20.513
9 45 0.219 0.329 20.035 20.501
10 50 0.208 0.323 20.033 20.499
11 55 0.214 0.329 20.031 20.467
12 60 0.216 0.328 20.024 20.455
13 65 0.221 0.330 20.037 20.540
14 70 0.240 0.331 20.035 20.540
15 75 0.256 0.336 20.032 20.562
16 80 0.269 0.335 20.021 20.418
17 85 0.285 0.334 20.013 20.460
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assessed by RMSEP , it does help minimize of overfitted models and that more reliable predictionsjackknife

overfitting. However, it is surprising and difficult to may actually be obtained from the pruned model.
explain why this decrease is not linear. Until independent evidence is found, however, this

will remain a conjecture. Nonetheless, our results
Further analysis of the performance of each pruned show that, for reconstruction purposes, a model can-

model was done by comparing the average bias and not be judged solely on global measures of predictive
the maximum bias in the prediction model (ter Braak power like RMSEP (since both full-data ANN and
and Juggins 1993). For estimation of the maximum WA models had equivalent RMSEP). On palaeolim-
bias, the sampling interval was subdivided into 10 nological grounds, the reconstructed pH values below
equal intervals, the bias per interval calculated, and 5 between 2500 and 8500 B.P. suggested by the full-
the maximum of the 10 values calculated (ter Braak set ANN model (Figure 3d) seem unlikely in the
and Juggins 1993). Table 2 shows the statistics for absence of the input of strong acids prior to the
each reduced model. As no difference is observed for Industrial Revolution. We suggest that greater efforts
the mean or maximum bias between the initial set (all should be made towards the development of reliable
taxa) and all the reduced sets, it appears that the and independent measures of robustness. Until such
deletion of taxa based on Skeletonization pruning tools are developed, however, our results argue that
does not affect the general trends of these models. non-essential taxa may only improve the apparent

Even if the results show that the predictive capacity predictive power, and may in fact be a detriment to
of all reduced models is similar in global terms such down-core reconstructions.

2as RMSEP , r and bias, the reconstruc-jackknife jackknife

tions for a given lake may be different between the Comparison between Skeletonization pruning and
reduced models (Figure 2). Thus, the question re- N2 selection on model performance
mains as to what extent can these various differences
in prediction be attributed to differences in taxon To compare the Skeletonization pruning procedure
inclusion or whether a model built using only selected with the deletions used by Birks (1994) and Wilson et
taxa can produce more reliable predictions when al. (1996), new ANN models were constructed using
applied to fossil down-core reconstructions. We ex- the SWAP data-set successively reduced by 5%
amined this question by comparing down-core pH groups in decreasing order of Hill’s N2 value. Their
reconstructions for the Round Loch of Glenhead using
various levels of skeletonization. Each ANN-based
skeleton inference model was applied to the 101 fossil
assemblages from the Round Loch of Glenhead core,
representing 10 300 radiocarbon years of continuous
sediment deposition (Jones et al. 1989). ANN
skeleton-based-pH-reconstruction with 30%, 60%,
and 85% pruned taxa (Figure 3a-c) were compared to
the reconstruction based on the full-set ANN,WA, and
ML based models (Figure 3d-f). All these transfer
functions produce a generally similar pH reconstruc-
tion for the lake (Figure 3a-f), suggesting that (i) the
inclusion of more than 15% of taxa does not provide
more information about past pH levels and (ii) even
when using this 15% of taxa for calibration, ecologi-
cally important taxa present in the core sample are
also contained in the calibration. However, it is sur-
prising and somewhat disturbing that it is when all
taxa are included in the calibration that the pH recon-
structions based on ANN and WA predictions differ

Figure 2. Plot illustrating the differences between predictions
the most and, for some periods, this difference even (leave-one out jackknifing predictions) for each lake in the cali-
exceeds the associated error (RMSEP) of each model. bration data-set depending on the number of taxa included in the
We suggest that this may due to the greater sensitivity model. The fitted line is a 1:1 line.
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85% of taxa are removed. On the basis of the N2
values, our results corroborate the findings of Birks
(1994) who showed that, for the same data-set, the
lowest RMSE of prediction (0.32) occurs in WAboot

regression and calibration prior to deletion of any
taxa. However, even if the performance of WA
models depends on the N2 value of the taxa, the
conclusion from this series of numerical experiments
is that the functionality of individual taxa in an ANN
model calibration is not related to their N2 values.
Also, in a WA model, when only using the 37 selected
taxa on the basis of their ANN functionality, the

2performance (RMSEP of 0.424, r ofjackknife jackknife

0.70) is similar to that obtained with the 37 highest N2
2taxa (RMSEP of 0.411, r of 0.72).jackknife jackknife

These results imply that the functionality (and pos-
sibly the importance) of a given taxon can be different
between an ANN and a WA model. This supports our
previous suggestion (Racca et al. 2001), that the two
modelling approaches are both conceptually and
mathematically different: a taxon with a high func-
tionality in an ANN model may have a low function-
ality in a WA model and vice versa.

Comparison between skeletonization-based and
other measures of taxon importance

As the relative contribution estimated by the ANN
pruning algorithm can be biased for correlated taxa,

Figure 3. Diatom-inferred pH at the Round Loch of Glenhead (UK)
for the past 10,300 radiocarbon years. based on (a) 30% pruned
ANN based model, (b) 60% pruned ANN based model, (c) 85%
pruned ANN based model, (d) full-set ANN based model, (e)
full-set WA based model, and (f) full-set Gaussian maximum
likelihood based model. The new WACALIB program (version 3.5)
with the de-bug in the maximum likelihood algorithm (Birks 2001)
was used here.

respective predictive capabilities were then compared
using leave-one-out jackknifing on all the reduced
taxa data-sets. Figure 4 shows the changes of
RMSEP when the data-sets are reduced by thejackknife

two methods. When taxa are removed according to
their N2 values, only 20% of taxa can be excluded, as
opposed to 85% when using skeletonization, as model
performance starts to show a major decrease once

Figure 4. Plot illustrating the changes of the root mean square error
25% of taxa were excluded (RMSE of 0.323 tojackknife of prediction (RMSEP ) when taxa are removed according tojackknife
0.343). This decrease progressively continues to reach their N2 values (white circles) and to their functionality (black

2an RMSEP of 0.430 (r of 0.69) when circles).jackknife jackknife
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we suggest exercising prudence when comparing the importance is not driven by any of the commonly
effective (i.e., skeletonization-based) importance of regarded measures of importance (N2, number of
taxa with other commonly believed (marginal) mea- occurrences, WA tolerance). As demonstrated above,
sures of importance. For this reason, we made no this also seems to be true for WA models: their
attempt to compare the individual taxon’s level of performances are similar using the 37 most functional
importance. However, it is possible to compare the taxa (for ANN; Table 3) or the 37 taxa with the
marginal characteristics of each pruned group (5%) of highest N2. Therefore, we suggest that for both an
taxa. Figure 5 shows the distribution of these charac- ANN or WA approach, these measures of marginal
teristics. These characteristics are grouped on the box importance may be of little practical use other than for
plots in term of maximum, minimum, median, and a preliminary description of the data: a taxon with a
inter-quartile range of Hill’s N2 (Figure 5c), number high marginal importance may have a low causal and
of occurrences (Figure 5b), and WA tolerance (Figure predictive importance, and a taxon with a low margi-
5a). If marginal importance was truly correlated to nal importance may have a high causal and predictive
effective importance in an ANN model calibration, importance. However, it should be stressed that the
then the pruning process used here should have re- taxa selected on the basis of their effective importance
moved the least marginally important taxa first. How- in an ANN model cannot necessarily be used to
ever, this is not the case, suggesting that effective construct a reliable WA model.

Table 3. General characteristics of the 37 most functional taxa for calibration based on ANN modelling approach

Species Number of occurrences WA tolerance Hill’s N2

Achnanthes minutissima minutissima (Kutz., 1833) 118 0.672 46.062
Achnanthes marginulata (in Cleve & Grun., 1880) 118 0.618 30.867
Asterionella formosa formosa (Hassall, 1850) 27 0.363 11.309
Asterionella formosa ralfsii (W. Sm.) Wolle, 1890 11 0.694 3.448
Actinocyclus normanii normanii (Greg. ex Grev.) 13 0.397 8.029
Aulacoseira subborealis (SWAP 1989) 4 0.451 1.373
Aulacoseira sp form 1 29 0.705 16.828
Aulacoseira sp form 2 13 0.323 6.417
Brachysira vitrea (Grun.) 140 1.159 50.176
Cymbella cesatii cesatii (Grun.) 23 0.759 7.644
Cymbella gracilis (Rabenh.) Cleve, 1894 118 0.733 60.512
Cymbella gracilis scotica (W. Sm.) Rabenh., 1864 7 0.840 3.925
Cyclotella comta comta (Ehrenb.) Kutz., 1849 39 0.388 20.442
Cyclotella comensis (Grun.) in Van Heurck, 1882 29 0.590 6.363
Cyclotella sp 101 0.966 24.939
Eunotia exigua tridentula 10 0.334 6.016
Eunotia diodon (Ehrenb., 1837) 18 0.560 11.070
Eunotia parallela parallela (Ehrenb., 1843) 9 0.372 4.020
Eunotia incisa (W. Sm.) ex Greg., 1854 145 0.554 70.353
Eunotia curvata subarcuata (Naegeli ex Kutz.) 33 0.479 20.510
Fragilaria construens venter (Ehrenb.) 49 0.893 23.225
Fragilaria elliptica (Schum., 1867) 30 0.716 7.139
Gomphonema angustatum angustatum (Kutz.) 31 0.770 13.104
Navicula pupula pupula (Kutz., 1844) 47 0.850 17.242
Navicula angusta (Grun., 1860) 56 0.949 17.773
Navicula soehrensis soehrensis (Krasske, 1923) 13 0.234 1.559
Navicula impexa (Hust., 1961) 21 0.951 6.066
Navicula bacilliformis (Grun.) in Cleve & Grun., 1880 6 0.312 1.385
Navicula seminuloides (Hust., 1937) 9 0.630 3.679
Nitzschia perminuta (Grun.) in Van Heurck 19 0.315 10.843
Nitzschia palea tenuirostris (Grun.) in Van Heurck, 1881 9 0.484 4.921
Nitzschia acula (Hantzsch) ex Cleve & Grun., 1880 14 0.709 8.046
Pinnularia microstauron microstauron (Ehrenb.) Cleve, 1891 80 0.733 35.718
Surirella linearis linearis (W. Sm., 1853) 39 0.889 11.143
Tabellaria fenestrata (Lyngb.) Kutz., 1844 18 0.932 10.626
Tabellaria quadriseptata (Knudson, 1952) 87 0.614 23.085



130

the inclusion of all taxa in the construction of a
transfer function model, one must assume that they all
contribute, albeit to different extents, to the true (not
just the apparent) performance of the model. How-
ever, our study suggests that this is not the case.
Instead, it is clear that some taxa have less importance
in the calibration and thus can be ignored in the
model. These taxa will surely differ, depending on the
variable being studied, as their effective relevance
will vary depending on the environmental variable of
interest. Therefore, any measure which is totally
independent of the environmental variable, such as
N2 or number of occurrences, cannot be considered a
complete measure of relevant importance and should
therefore not be used as a criterion for eliminating
taxa. Intuitively, this suggests that a measure which
does depend on the environmental variable, such as
WA tolerance, should be a more useful way of
evaluating effective importance. Again, our data sug-
gest it is not the case (Figure 5a).

Although tolerance can easily be fitted into a coher-
ent ‘‘ecological’’ theory of importance, it is apparent-
ly of little empirical value to the predictive power of
the calibration model. Therefore, while it may be
appropriate to use an environmentally dependent mea-
sure (such as tolerance) to eliminate taxa from a data-
set, this criterion does not guarantee its reliability
either. We suggest that the exclusion of taxa based on
a strictly empirical measure of importance is attractive
for at least two reasons. First, the functionality estima-
tion of an individual taxon based on a pruning pro-
cedure is environmentally dependent. Second, in this
type of approach, the selection of taxa is made in
order to create an optimal model for a given task with
no a priori knowledge (based only on a fixed level of
error) whereas in other approaches, the selection of
taxa is based on a priori knowledge in order to createFigure 5. Box plots of the general characteristics of (a) WA-toler-

ance, (b) number of occurrences and (c) Hill N2 values for each an optimal solution. Therefore, even if the inclusion
class of taxon importance. of all taxa produces reasonable results, we suggest

that it may only be a sub-optimal solution.

Optimal models and taxa data-set reduction
General discussion

Because calibration sets in palaeolimnology often
Taxa contribution and choice of method for taxon contain many taxa and few lakes, all modelling tech-
inclusion niques proposed for developing quantitative inference

models suffer to a large degree from the ‘‘curse of
In theory, the inclusion of all taxa is desirable in a dimensionality’’ (ter Braak 1995). This translates into
down-core reconstruction because it increases the transfer functions that typically overfit the relation-
probability that the fossil taxa will also be found in the ship between taxon assemblages and environmental
modern calibration set. On the other hand, to justify variables. This is why ‘‘brute-force’’ procedures such



131

as jackknifing and bootstrapping were introduced in for example, the ecological characteristics of the taxa
palaeolimnology in the first place: to minimise the that are deemed important.
problem of overfitting and to obtain more realistic Although it would seem obvious that the ‘‘curse of
measures of predictive power (Birks 1995, 1998). dimensionality’’ is directly related to the ratio of the
However, it should be borne in mind that, ultimately, number of taxa to the number of lakes (as this ratio
it is always an overfitted model that is used in recon- determines the ratio of the dimensional space in which
struction. Only its purported predictive power has the function is determined to the number of observa-
been estimated and toned down by jackknifing or tions for which the function is determined), no studies
bootstrapping. We contend that this is far from the seem to have taken this into account. However, when
best modelling approach. Instead, we suggest that a we compiled the predictive characteristics of 35 re-
more optimal model should contain all but also only cent palaeolimnological diatom-based inference
those taxa that are necessary for the model to perform models (Table 4), it is clear that the degree of
well, and we therefore need efficient methods to generalization (robustness) of these models is inverse-
separate the ‘‘wheat from the chaff’’. Only when the ly related to their dimensionality (Figure 6). This
clutter from our overburdened palaeolimnological robustness is expressed here as the ratio between the
inference models has been removed can we hope to apparent performance (RMSE) and the cross-val-
improve our understanding of the model by finding, idated performance (RMSEP) (Figure 6). Only when

Table 4. Examples of the recently published diatom-based inference models in paleolimnology used in Figure 6

References Env. variables Samples Taxa Models

Joynt and Wolfe (2001) Air temperature 61 107 WA
Korsman and Birks (1996) Alkalinity 119 115 WA
Joynt and Wolfe (2001) Conductivity 61 107 WA
Ng and King (1999) Conductivity 93 53 WA
Reed (1998) Conductivity (log 10) 74 169 WA
Korsman and Birks (1996) Colour (log 10) 119 115 WA
Moser et al. (2000) Depth 35 112 WA
Moser et al. (2000) Depth 53 177 WA-PLS (3)**
Dixit et al. (1993) DOC 71 188 WA
Philibert and Prairie (2002) DOC 41 160 WA-PLS (2)**
Philibert and Prairie (2002) DOC 35 101 WA
Philibert and Prairie (2002) DOC 76 214 WA-PLS (2)**
Rosen et al. (2000) pH 50 157 WA
Cameron et al. (1999) pH 118 530 WA-PLS (3)**
Cameron et al. (1999) pH 167 277 WA-PLS (2)**
Racca et al. (2001) pH 76 214 WA-PLS (3)**
Hall and Smol (1996) pH 54 92 WA
Joynt and Wolfe (2001) pH 61 107 WA
Dixit et al. (1993) pH 71 188 WA
Philibert and Prairie (2002) pH 41 160 WA-PLS (3)**
Philibert and Prairie (2002) pH 35 101 WA-PLS (2)**
Korsman and Birks (1996) pH 119 115 WA
Wilson et al. (1994) Salinity 102 107 WA
Wilson et al. (1994) Salinity 42 54 WA
Roberts and Mcminn (1998) Salinity (log 10) 33 47 WA
Roberts and Mcminn (1998) Salinity (log 10) 33 47 WA-tol

´Rosen et al. (2000) Surface temp (J)* 52 157 WA-PLS (3)**
Lotter et al. (1997) Surface temp (S)* 64 345 WA-PLS (2)**
Pienitz et al. (1995) Surface temp (S)* 61 107 WA

´Rosen et al. (2000) TOC 33 157 WA-PLS (3)**
Hall and Smol (1996) TP 54 92 WA
Reavie et al. (1995) TP 64 150 WA
Lotter et al. (1998) TP (log 10) 72 341 WA-PLS (2)**

*(S)5Summer, (J)5July **number of components, WA – Weighted averaging, WA-tol – Tolerance-Downweighted weighted averaging,
WA-PLS – Weighted averaging partial least squares, DOC – Dissolved organic carbon, Temp – Temperature, TOC – Total organic carbon,
TP – Total phosphorus
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as N2, number of occurrences, or tolerance. There-
fore, in order to build efficient ANN palaeolimnologi-
cal transfer-function models, taxa with little or no
effective importance need to be removed. The pro-
cedure proposed here is one way of achieving this,
resulting in a more robust model, with at least as
much predictive power as other more complex
models. Once validated using other data-sets, this
procedure could prove a very useful tool for
palaeolimnological reconstruction based on ANNs. It
is also hoped that the approach can help shed light on
what makes a particular taxon important and another
taxon not important in a palaeolimnological recon-
struction.
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