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Abstract

We explored the possibility of using artificial neural networks (ANN) to develop quantitative inference models in
paleolimnology. ANNs are dynamic computer systems able to learn the relations between input and output data.
We developed ANN models to infer pH from fossil diatom assemblages using a calibration data set of 76 lakes in
Quebec. We evaluated the predictive power of these models in comparison with the two most commonly methods
used in paleolimnology: Weighted Averaging (WA) and Weighted Averaging Partial Least Squares (WA-PLS).
Results show that the relationship between species assemblages and environmental variables of interest can be
modelled by a 3-layer back-propagation network, with apparent R2 and RMSE of 0.9 and 0.24 pH units, respec-
tively. Leave-one-out cross-validation was used to access the reliabilities of the WA, WA-PLS and ANN models.
Validation results show that the ANN model (R2

jackknife 
= 0.63, RMSE

jackknife
 = 0.45, mean bias = 0.14, maximum bias

= 1.13) gives a better predictive power than the WA model (R2
jackknife

 = 0.56, RMSE
jackknife

 = 0.5, mean bias = –0.09,
maximum bias = –1.07) or WA-PLS model (R2

jackknife
 = 0.58, RMSE

jackknife
 = 0.48, mean bias = –0.15, maximum

bias = –1.08). We also evaluated whether the removal of certain taxa according to their tolerance changed the per-
formance of the models. Overall, we found that the removal of taxa with high tolerances for pH improved the pre-
dictive power of WA-PLS models whereas the removal of low tolerance taxa lowered its performance. However,
ANN models were generally much less affected by the removal of taxa of either low or high pH tolerance. Moreo-
ver, the best model was obtained by averaging the predictions of WA-PLS and ANN models. This implies that the
two modelling approaches capture and extract complementary information from diatom assemblages. We suggest
that future modelling efforts might achieve better results using analogous multi-model strategies.

Introduction

The first quantitative paleoenvironmental reconstruc-
tion models developed by Imbrie and Kipp (1973) were
based on linear or curvilinear regression models be-
tween principal components extracted from modern
species assemblages and environmental variables of
interest. Since then, several other models have been
proposed, two of which are now widely used in paleo-
limnology: Weighted Averaging regression (WA) (ter
Braak & van Dam, 1989; Birks et al., 1990) and Wei-

ghted Averaging-Partial Least-Squares regression (WA-
PLS) (ter Braak & Juggins, 1993). These models as-
sume a unimodal relationship between species and
environmental variables. However, even though it is
usual in a calibration data set that some taxa show a
statistically significant unimodal or linear response to
the environmental gradient of interest, other taxa may
show a skewed unimodal or sigmoid increasing or de-
creasing response (Huisman et al., 1993; Birks, 1998).
Therefore, models with a sufficient flexibility to ac-
commodate the full range of observed responses might
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be more powerful than methods that assume either a
unimodal response of all taxa or a linear response of
all taxa (Birks, 1998).

Artificial neural networks (ANN) have the potential
for modelling and incorporating such mixtures of re-
sponses. Derived from Artificial Intelligence (AI), ANNs
are dynamic computer systems capable of ‘learning’ the
relations between input and output data. They are com-
posed of many non-linearly inter-connected simple pro-
cessing units (neurons) that work in parallel. During the
training process (iterative simulations), the network
adapts itself from examples and the optimal relations
(functions) between the input and output data are found
and implemented automatically. The implemented func-
tion can then be used to predict dependent variables
using only the independent ones. The main advantage
in using ANN is that no a priori assumptions about the
relation between inputs (independent variables) and
output (dependent variable) are necessary. However,
the drawback is that those relations learned by an ANN
are hidden in its neural architecture and cannot be ex-
pressed in traditional mathematical terms.

ANNs are used in various fields including physics
(Rahim et al., 1993) and medicine (Lerner et al., 1994).
In ecology they are seldom used, although a few pa-
pers have shown that they can give superior results to
more traditional statistical methods such as multiple
regression (Brey et al., 1996; Lek et al., 1996; Moatar
et al., 1999). Comparisons have also been made to
paleoceanographic tools like MAT (Modern Analog
Technique) (Malmgren & Nordlund, 1997), Imbrie and
Kipp-type transfer functions (Malmgren & Nordlund,
1997) and SIMCA (Soft Independent Modelling of
Class Analogy) (Malmgren & Nordlund, 1997).

In this paper, we propose a modelling method based
on one form of neural networks: the back-propagation
algorithm (Rumelhart et al., 1986). We explore the po-
tential of this approach to modelling and inferring pH
from a diatom calibration data set based on 76 lakes in
Quebec. We then compare the ANN results to two other
techniques commonly used in paleolimnology: WA and
WA-PLS.

Methods

ANN principle

Artificial neuron
An artificial neuron is a processing element like a bio-
logical neuron (Figure 1a). It works as follows: (1) it

receives input (from the original data or from the out-
put of other neurons in the network). Each input comes
via a connection which has a given strength (weight);
these weights correspond to the synaptic efficiency in
a biological neuron. The weighted sum of the inputs is
formed to compose the activation of the neuron. (2) The
activation signal is passed through an activation func-
tion (sigmoid, tan sigmoid, linear or step function) to
produce the output of the neuron. The output is then
duplicated as many times as needed.

Figure 1. (a) Schematic representation of a simple processing ele-
ment. The incoming signals (p) are multiplied by the weight of the
connections (W) and summed. The bias (B) is then added, and the
resulting sum is filtered through the activation function to produce
the activity of the neuron. (b) Schematic representation of the gen-
eral architecture of a 3-layer back-propagation network with five
elements in the input layer, three neurons in the hidden layer, and
one neuron in the output layer.
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Back-propagation neural networks

In this type of network, neurons are arranged in a dis-
tinct layered topology: one input layer, one or more
hidden layers and one output layer (Figure 1b). The in-
put layer is not really neural at all: these units simply
serve to introduce the value of the input variables. The
hidden and output layer neurons are each connected to
all of the units in the preceeding layer.

The back-propagation algorithm (descending gradi-
ent algorithm) is based on supervised learning, namely
to learn, the system has to know, for each example, the
output (environmental variable) associated with the
input (species data). The learning phase consists of
adjusting the weights of the network connections by
feeding a set of input/target pattern pairs (examples)
many times. The back-propagation algorithm works as
follows: (1) the network is initialised by assigning a
learning rate, a maximum number of iterations and ran-
dom values to the synaptic weights; (2) a training pat-
tern is fed and propagated forward through the network
to compute an output value for each output unit; (3) the
computed output is compared with the expected out-
put; (4) a backward pass through the network is per-
formed, changing the synaptic weight on the basis of
the observed output errors. Steps 2 through 4 are iter-
ated for each pattern in a training set, then the network
performance is checked and a new set of training pat-
terns is submitted to the network (i.e., a new epoch is
started) if it needs further optimization. This dynamic
procedure allows the difference between the predicted
output and observed output to converge towards a mini-
mal value. Details of the back-propagation algorithm
are presented in Appendix 1.

Back-propagation networks are also called ‘univer-
sal approximators’ and, as such, they are ultimately
able to learn any pattern perfectly. These networks are
only really useful if they are capable, after a learning
period, of generalizing. In order to generalize, a net-
work must be able to produce the correct output data
on samples not included in the learning set. A well-built

neural network will, after training with a learning set,
give a high proportion of correct predictions when fed
a validation set. Background information on ANNs is
available in various introductory textbooks such as
Bishop (1995).

Data set

Data for 76 lakes distributed in two regions of Que-
bec (Abitibi and Réservoir Gouin) were used in this
study. Lakes in Réservoir Gouin (n = 35) were sam-
pled three times during the ice-free season in 1996 and
1997 while the Abitibi lakes (n = 41) were sampled
twice between June and August 1996 (n = 20) and
1997 (n = 21) (for details, see Enache & Prairie, in
press). pH values are summer averages obtained from
these samples. The range, mean and median are sum-
marised in Table 1.

Modern diatoms recovered from the surface sed-
iments of the 76 lakes were processed, identified and
counted (for methodological details, see Enache &
Prairie, in press). In total, 214 fossil diatom taxa (rela-
tive abundance > 1%) were identified. Only 20% of the
214 taxa are present in at least 10 lakes while 50% are
present in 3 lakes or less. An average of 18 taxa were
identified per lake. Some details of the species data-set
are summarised in Table 1.

Numerical methods

We determined whether to use linear- or unimodal-
based regression and calibration techniques (ter Braak
& Prentice, 1988; Birks, 1995) by detrended canoni-
cal correspondence analysis (DCCA; ter Braak, 1986).
The gradient length of DCCA axis 1 is a measure of
compositional change in the diatom data in standard
deviation (S.D.) units along the pH gradient (ter Braak
& Juggins, 1993; Birks, 1995). The statistical signifi-
cance of the pH-diatom relationship was assessed by

Table 1. Calibration data-set characteristics

Minimum Maximum Mean Median S.D.

Environmental variable
pH (units) 4.16 8 6.31 6.39 0.74

Diatom
presence (taxa/lake) 8 31 17.66 17 5.83
taxa occurrences in data-set 1 49 6.35 3 8.3
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Table 2. Type of taxon responses to pH, their WA optimum, WA tolerance and number of occurences. Only taxa that occur in 5 or more lakes
were considered (in total 82 taxa)

Type of response Taxa Optimum Tolerance Occurrence

Unimodal asymmetric Aulacoseira distans nivaloides 5.97 0.64 11
Aulacoseira distans tenella 6.16 0.83 33
Cyclotella bodanica lemanica 6.62 0.52 36
Cyclotella michiganiana 7.07 0.69 7
Cyclotella stelligera 6.49 0.56 38
Cymbella gaeumanii 5.62 0.62 10
Cymbella hebridica 5.17 1.06 9
Eunotia bilunaris 5.19 0.96 11
Eunotia exigua 5.92 0.86 8
Eunotia pectinalis ventralis 5.18 0.89 8
Eunotia rhomboides 4.84 0.39 8
Fragilaria brevistriata (form3) 6.67 0.16 9
Fragilaria fasciculata 5.73 0.78 6
Fragilaria virescens exigua 5.89 0.59 15
Navicula radiosa 6.71 0.62 11
Navicula subtillissima 5.4 0.52 12
Neidium ampliatum 5.09 0.74 12
Neidium iridis 5.04 1.02 9
Tabellaria(form1) 5.96 0.7 11

Unimodal symmetric Amphicampa hemicyclus 5.58 0.63 6
Asterionella formosa 6.08 0.74 41
Aulacoseira alpigena 6.47 0.41 17
Aulacoseira italica subarctica 6.51 0.4 38
Brachysira brebissonii (form1) 6.07 0.51 33
Cyclotella comensis 6.39 0.4 8
Cyclotella ocellata 6.73 0.32 11
Cyclotella pseudostelligera (form3) 7.06 0.45 5
Cymbella gracillis 6.17 0.53 10
Eunotia bidentula 4.66 0.35 7
Eunotia incisa 6.13 0.48 20
Eunotia pectinalis 6.38 0.35 9
Fragilaria intermedia 7.24 0.36 5
Fragilaria pinnata pinata 7.19 0.46 10
Frustulia rhomboides var. saxonica 6.28 0.35 24
Navicula mediocris 6.11 0.41 5
Tabellaria flocculosa (form3) 6.29 0.54 49
Tabellaria flocculosa (form4) 4.97 0.3 7
Tabellaria fenestrata 6.46 0.32 22
Tabellaria quadrisepta 6.29 0.33 9
Tabellaria ventricosa 6.37 0.15 10

Sigmoid increasing Achnanthes minutissima minutissima 6.71 0.99 42
Amphora ovalis 6.79 0.42 7
Brachysira vitrea 6.78 0.95 14
Eunotia tenella 6.74 0.6 16
Fragilaria brevistriata (form1) 6.73 0.78 7
Fragilaria construens binodis 6.88 0.86 17
Fragilaria construens venter 7.04 1.06 14
Fragilaria lata 6.65 1.16 10
Gomphonema gracile 6.77 0.61 7
Navicula pupula pupula 6.73 0.61 10

Sigmoid decreasing Actinella punctata 5.2 0.92 6
Aulacoseira nygaardii 5.32 0.98 6
Aulacoseira perglabra 5.32 1.97 16
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Monte Carlo permutation tests involving 99 unre-
stricted permutations (ter Braak, 1990). DCCA was
implemented using CANOCO version 3.12 (ter Braak,
1988, 1990).

We also evaluated the relationship to pH of all taxa
occurring in a least 5 lakes (82 taxa). The statistical
relationship was assessed using a hierarchical set of
taxon response models (Huissman et al., 1993). This
hierarchical set of response models consists of a skewed
asymmetric unimodal response model, a symmetric
Gaussian unimodal response model (ter Braak & Loo-
man, 1986; Birks et al., 1990), a monotonically increas-
ing or decreasing sigmoidal response model (Birks et
al., 1990), and a null model with no relationship to pH
(Birks et al., 1990). The taxon response modelling was
done using the program HOF (J. Oksanen, unpublished
program). Taxa with statistically significant fits to pH
under the different types of response models are given
in Table 2.

WA and WA-PLS models

As the data-set had a gradient greater than 2.5 S.D
units along its pH gradient, the unimodal techniques
of Weighted Averaging (WA) and Weighted Averaging
Partial Least Square (WA-PLS) were used to develop
pH diatom-based inference models. In WA regression,
the optimum for each taxon is estimated from the train-
ing set based on the abundance of diatoms in the surficial
sediment and the measured environmental variables
(Birks et al., 1990). The regression step then allows
inference of the environmental conditions from the
diatom composition (Birks et al., 1990). WA-PLS is an
extension of simple WA (ter Braak & van Dam, 1989;
Birks et al., 1990) in which successive components are
extracted from the training set. WA and WA-PLS were
carried out using a SAS/IML implementation of the
algorithm (Y.T. Prairie, unpublished program). In this
program, the final number of components retained in

Table 2. Continued

Type of response Taxa Optimum Tolerance Occurrence

Eunotia faba 5.85 0.94 7
Frustulia rhomboides 5.47 1.02 25
Pinnularia braunii 5.3 1.34 15
Pinnularia gibba 5.81 1.02 14
Pinnularia microstauron (form1) 5.84 1.15 6
Pinnularia microstauron (form2) 5.63 0.76 11
Stauroneis agrestis 5.7 1.03 6
Tabellaria ventricosa 5.78 0.93 24

No relation Aulacoseira ambigua 6.47 1.07 11
Aulacoseira distans distans 6.53 0.92 22
Aulacoseira distans humilis 6.34 0.65 14
Aulacoseira lirata 6.2 0.67 25
Brachysira brebissonii (form3) 5.88 0.47 5
Cyclotella meneghiniana 6.69 0.56 5
Cyclotella pseudostelligera (form1) 6.32 0.75 8
Cymbella incisa 6.38 0.44 5
Cymbella microcephala 6.53 1.46 8
Cymbella silesiaca 6.3 0.46 9
Eunotia bilunaris mucophyla 6.01 0.69 19
Eunotia paludosa 6.43 0.73 8
Eunotia polyglyphis 6.67 1.19 6
Eunotia subarcuatoides 5.99 0.65 6
Fragilaria nanana 6.471 0.81 5
Navicula subatomoides 6.5 0.84 9
Navicula laevissima 6.45 0.9 9
Nitzschia fonticola 6.35 1.18 8
Nitzischia minutula 6.46 0.68 12
Pinnularia maior 6.49 0.58 8
Stauroneis phoenicenteron 6.04 1.13 10
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the model corresponds to the minimum number of
components whose jackknifed RMSE is not signifi-
cantly (as assessed by an F ratio on the MSEs) higher
than the model with the minimum RMSE

jackknife
 (van der

Voet, 1994).

ANN models

To compare with the WA and WA-PLS models, we used
back-propagation neural networks with 3 layers. Each
unit of the first layer (input) is an identity neuron. Their
activity represents the values of the relative abundance
(%) of the diatom species in a sample. The output layer
is composed of a unique unit (linear activation func-
tion) representing pH. The hidden layer contains units
with symetrical-sigmoid activation functions. The
number of units in this layer depends on the complex-
ity of the problem. In order to find the best possible
network, we tried various numbers of hidden layer units
(2, 3, 5, and 10). So-called bias neurons, connected to
each neuron on the hidden layer and the output layer
were also used. This type of neuron is similar to a con-
stant in a multiple regression. The pH neural network
models were built using YANNS (Yet Another Neural
Network Simulator) (Boné et al., 1998).

Models validation

WA and WA-PLS

The predictive ability of these diatom-based calibration
models was assessed by the coefficient of determina-
tion between the measured and the diatom-inferred
values (R2) and the apparent root mean square error
(RMSE). However, R2

jackknife
 and RMSE

jackknife
 were also

computed as they are more realistic measures of pre-
dictive power than the apparent statistics (Birks, 1998).
Jackknifing consists of an iterative re-sampling tech-
nique involving a new training set of n-1 lakes from the
original calibration set and its application to the one
excluded sample. Further aspects of the model per-
formance are the average bias and the maximum bias
in the residuals for the test set (ter Braak & Juggins.,
1993). For estimation of maximum bias, the sampling
interval was subdivided into 10 equal intervals, the
bias per interval calculated and the maximum of the
10 values calculated (ter Braak & Juggins., 1993).

ANN

Given the relatively low number of lakes (76) in this
study, usual cross-validation methods (K-fold cross-

validation or Hold-out procedure (German et al., 1992))
were not appropriate. These methods consist of ran-
domly dividing the calibration set into two subsets
(learning and validation 1:1, 2:1 or 3:1, etc..) and are
not well-suited to short and large data sets typical of
paleolimnological applications. This is because the
training set still has to be large enough to be representa-
tive and the validation set has to be large enough to
allow a robust validation of the network. We therefore
used the same validation method as used in WA and
WA-PLS models, namely leave-one-out cross-validation
or jackknifing cross-validation (Efron, 1983; Kohavi,
1995). In this case, each lake in the calibration data-
set (species/environmental variables couplets) is succes-
sively used in the validation. The jackknifing technique
consists of building a complete set of networks (each
with n-1 training examples and 1 validation case) and
attempts to find, for the entire set of networks, a com-
mon number of iterations for an optimal generaliza-
tion. This generalization is expressed as the average
RMSE

jackknife. 
The number of iterations used in the con-

struction of the final network uses the early stopping
method, that is when the average error in the validation
set is minimal. This avoids overfitting (overtraining).
Apparent RMSE is given by the average error in the
learning set when training is stopped. RMSE

jackknife
 is

given by the average error in the validation set. We also
evaluated the average and the maximum bias of the
residuals as previously described.

Results and discussion

Data-set characteristics

The diatom data-set is large (214 taxa × 76 lakes), sparse
(8–31, mean = 18 taxa per sample, 91% of zero val-
ues) and can therefore be characterized as noisy. pH
values are normally distributed in the data set (Shapiro-
Wilk W statistic = 0.96, prob (W) = 0.06) and the
range of the observed values is large (4.16–8.05 mean
= 6.31). Fifty percent of samples in the data-set have a
pH between 6 and 6.74. Only 5 lakes have a pH < 5
and 10 lakes a pH > 7. Table 1 shows the details of the
calibration data-set characteristics.

Monte Carlo permutation tests of DCCA axis 1 con-
strained to pH show that the data-set has a statistically
significant (F ratio = 3.45, p value = 0.01) relationship
to pH. pH explains 4.5% of the variance in the data-
set and the gradient length is 3.55 S.D.

Table 2 shows the type of response of all taxa present
in 5 lakes or more (40% of total species). Seventy five
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percent of these taxa have statistically significant re-
sponses to pH; 50% have a symmetric Gaussian or
asymmetric unimodal responses while 25% have an
increasing or decreasing sigmoidal response. Given the
long gradient length (3.55 S.D., pH range of 3.86 units),
it is surprising that only 50% of taxa have a unimodal
response to pH.

ANN pH-inference models

Optimal performances were obtained with 3 units in
the hidden layer (214/3/1) (Table 3). RMSE decreases
exponentially as the number of training epochs (itera-
tions) increases while RMSE

jackknife
 decreases and then

increases (Figure 2). The best pH model was obtained
after 700 epochs (Figure 3). RMSE and RMSE

jackknife

were 0.24 and 0.45, respectively. The apparent coeffi-
cient of determination (R2) was 0.9 while R2

jackknife
 was

0.63. Figures 3a and 3b illustrate the fit between the
estimated or jackknifed-predicted and observed pH
when RMSE and RMSE

jackknife
 are minimal. Figures 3c

and 3d illustrate the distribution and the homogene-
ity of residuals. Residuals are normally distributed
(Shapiro-Wilk W test = 0.98 prob W ≈ 0.90) and the
average bias and maximum bias are, respectively, 0.14
and 1.13 pH units. We did not observe any systematic
trend in the residuals (Figure 3d).

WA and WA-PLS pH-inference models

WA pH-inference models gave an apparent and jack-
knifed RMSE of, respectively, 0.33 and 0.5 pH units,
with corresponding apparent R2 and R2

jackknife 
of 0.81

and 0.56. Other summary statistics are given in Table
3. Plots of observed pH against estimated (apparent)
(Figure 4a), or jackknifed-predicted pH (Figure 4b),
and their corresponding residual plots (Figures 4c &

4d) show that there is a systematic bias in the predic-
tive model, with a tendency for predicted values to be
over-estimated at low pH and under-estimated at high
pH values. The range of predictions is almost 2 times
smaller (5.17–7.26, 2.09 units) than the observed range
(4.16–8.0, 3.84 units). This bias disappeared after in-
verse deshrinking (Birks et al., 1990).

Three-component WA-PLS pH-inference models
gave slightly better results than WA: 0.23 pH units for
RMSE, 0.48 for RMSE

jackknife
 while R2 and R2

jackknife
 are

0.90 and 0.58, respectively (Table 3). Figures 5a and
5b show the fit between the observed and estimated pH
values and the observed and jackknifed-predicted pH
values. Mean bias and maximum bias are, in this case,
–0.15 and –1.08 (Table 3). The WA-PLS model out-per-
forms the WA model mainly because the high pH val-
ues are not underestimated (Figure 5d). In this case, the
predicted range (4.64–8.19, 3.55 units) is almost as
large as the observed range. Because the number of
components of the final WA-PLS model is chosen on
the basis of the decreasing RMSE with successive com-
ponents before deshrinking, it is quite conceivable that
the secondary components of any WA-PLS models serve
mostly as a deshrinking component. Contrary to ANN
models, the residuals from the WA and WA-PLS mod-
els were not normally distributed (Figures 4c & 5c).

Taxon inclusion in the models

How many taxa to include in an inference model has
already been addressed to some extent by Birks (1994)

Table 3. Descriptive ANN, WA and WA-PLS pH-models summa-
ries

ANN WA WA-PLS

Number of components 1 3
Number of hidden units (ANN) 3
Number of samples used 76 76 76
Number of taxa used 214 214 214
Number of iterations (ANN) 700
RMSEapparent (pH units) 0.24 0.33 0.23
RMSEjackkinfe (pH units) 0.45 0.5 0.48
R2

apparent 0.9 0.81 0.9
R2

jackknife 0.63 0.56 0.58
Mean bias 0.14 –0.09 –0.15
Max bias 1.13 –1.07 –1.08

Figure 2. Changes in root-mean-square error of estimation (appar-
ent RMSE) and root-mean-square error of prediction (RMSEjackknife)
for pH with increasing number of iterations in 3-layer back-propa-
gation neural network with 3 units in the hidden layer. The netwoks
were trained over 60 intervals of 25 iterations each (in total 1,500
iterations).
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Figure 3. (a) Plot of observed pH values for the 76 lakes within the calibration set against estimated pH values. The estimated values are
based on the training set of a 3-layer back-propagation network with three units in the hidden layer. (b) Plot of observed pH values against
jackknifed-predicted pH values. The jackknifed-predicted values are based on the validation set (leave-one-out). For (a) and (b), the fitted line
is based on Model I regression. (c) Diagram of the distribution of the residuals (from b). (d) Plot of residuals (from b) against predicted pH.

and Wilson et al. (1996). Inclusion criteria can be based
either on a minimum abundance limit (i.e., 1% relative
abundance) or based on the occurrence of the taxa in
a minimum number of samples. Here we present an
analysis based on the taxon’s tolerances calculated
prior to the development of the models. A series of
numerical experiments was done to see if deletion
based on tolerance resulted in any change in WA-PLS
and ANN performances. For this purpose, only taxa that
occur in 5 or more lakes were considered.

As a high tolerance is indicative of ubiquitous taxa
and therefore unlikely to be affected by environmen-
tal changes, we successively deleted from the data
matrix taxa with the highest tolerances (0.9, 0.8, . . .,
0.5). For the ANN models, this procedure led to a slight
reduction in performance (as revealed by the R2

jackknife
,

Figure 6a) but, overall, the ANN performance remained
very stable. This was not the case for WA-PLS mod-
els, where the performance steadily improved as taxa
with high tolerances were removed. Ultimately, the best

fit was achieved when taxa with tolerances above 0.6 pH
units were omitted (RMSE

jackknife
 = 0.40 pH units and

R2
jackknife 

= 0.72). It is interesting to note that the taxa
with a high tolerance are essentially the taxa with a
sigmoidal response curve as opposed to a unimodal
response, as WA-PLS assumes.

We then evaluated in the same general manner whe-
ther the deletion of taxa with narrow tolerances would
affect the predictive capacities of the WA-PLS and
ANN models. Although not biologically surprising, our
results show that the removal of non-ubiquitous taxa
(e.g., taxa with a unimodal response curve) greatly
affected the predictive power of WA-PLS models (Fig-
ure 6b). However, this procedure hardly affected the
performance of the ANN model (Figure 6b). These
results demonstrate that, unlike WA-PLS inference
models, it is possible for ANN to infer pH from taxa
with a high tolerance. Clearly, the taxa information used
by the ANN is substantially different, both numerically
and conceptually, from that used by WA-PLS.
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Figure 4. (a) Plot of observed pH values for the 76 lakes within the calibration set against estimated pH values. The estimated values are
based on weighted averaging (WA) regression. (b) Plot of observed pH values against jackknifed-predicted pH values. The jackknifed-pre-
dicted values are based on a leave-one-out. For (a) and (b), the fitted line is based on Model I regression. (c) Diagram of the distribution of the
residuals (from b). (d) Plot of residuals (from b) against predicted pH.

Comparison of the models

It is important to note that the WA-PLS and ANN mo-
dels differ in two major ways. First, contrary to WA-
PLS models, ANNs do not require that taxa show a
unimodal relation to pH to obtain good results. In fact,
the inclusion or exclusion of taxa depending on their
tolerance indicates that the WA-PLS performance de-
pends largely on the percentage of low-tolerance taxa
within the calibration set. Second, even if the results
show that the predictive abilities of WA-PLS and ANN
models are relatively similar in global terms such as
RMSE

jackknife
 or R2

jackknife
 when all taxa are used, we

observed that the predictions for a given lake can be
very different between the two predictive models. Fig-
ure 7 illustrates the similarities and differences be-
tween the two models as a plot of ANN predictions
vs. WA-PLS predictions. Predicted pH can differ by
nearly one pH unit for some lakes depending on the
model used. The average absolute difference between

the models’ predictions was 0.30 pH unit.
This reinforces the notion that the two types of mod-

els are not only different mathematically, they are also
different in the taxon information used in their predic-
tion. They should therefore be viewed as complemen-
tary models. This is further demonstrated by the fact
that the model based on the average prediction of the
two models is better (R2

jackknife
 = 0.74, RMSE

jackknife
 =

0.38, mean bias = 0.005, and maximum bias = –0.71)
than either of the models alone (Figure 8). When we
combined the predictions obtained from the best WA-
PLS model (with wide-tolerance taxa removed) with
the best ANN model, the predictions were again im-
proved. Clearly, the information extracted from the
diatom assemblage data is not implemented in the same
way by the WA-PLS and ANN algorithms. It suggests
that each model is capable of capturing a part, but not
all, of the underlying complex relationships between
diatom assemblages and pH. If this is the case, the
development of dual models, based on the average re-
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sults of both WA-PLS and ANN, may become a tedious
but necessary procedure to obtain more reliable and
robust reconstructions. The next step will be to com-

pare results of this multi-model approach to those ob-
tained from the increasingly popular, but even more
tedious, multi-proxy models (Lotter et al., 1998). We

Figure 5. (a) Plot of observed pH values for the 76 lakes within the calibration set against estimated pH values. The estimated values are
based on a three-component weighted averaging partial least square (WA-PLS) regression. (b) Plot of observed pH values against jacknifed-
predicted pH values. The jacknifed-predicted values are based on a leave-one-out. For (a) and (b), the fitted line is based on Model I regres-
sion. (c) Diagram of the distribution of the residuals (from b). (d) Plot of residuals (from b) against predicted pH.

Figure 6. Plots illustrating the changes of R2
jackknife (a) when taxa with high tolerance are progressively removed (0.9, 0.8, . . ., 0.5 pH units)

and (b) when taxa with low tolerance (0.5–0.9) are progressively removed.
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are presently attempting to generalize our results to the
prediction of variables other than pH.

Conclusion

In this paper, we introduced the application of ANNs
to paleolimnological pH reconstruction based on dia-
toms. Our comparison of the relative performance of
WA-PLS and a three-layer back-propagation network

models on a pH-diatom data-set from 76 lakes showed
that Artificial Neural Networks can provide reliable
paleolimnological inference models and that their pre-
dictive power is similar to that obtained from WA-PLS.
However, they also differed on a number of points. WA-
PLS is much more sensitive to taxon deletion based on
their tolerance levels than ANNs. The two types of
models appear to differ in the way information is ex-
tracted from the biological data and, as a result, they
are complementary. Dual models produced the best
predictive models.
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Appendix

A brief algorithm of back-propagation in neural networks. Adapted
from Lek et al. (1996).

1. Initialize the number of hidden nodes.
2. Initialize the maximum number of iterations and the learning rate
(η). Set all weights to small random numbers.
3. For each training vector (input Xp = (x1, x2, . . . xn), output Y)
repeat steps 4–7.
4. Present the input vector to the input nodes and the output to the
output node.
5. Calculate the input to the hidden (h) nodes:

 n
ah

j = ∑ Wh
ij · xi (1)

i = 1

with aj: activation of the jth downstream neuron, xi: value at
the outlet of the ith neuron of the first layer (relative abun-
dance of taxon i), Wij: weight of the connection between the ith
neuron of the first layer and jth neuron of the hidden layer

Calculate the output from the hidden nodes:

Figure 7. Plots illustrating the differences between ANN and WA-
PLS predictions for each lake in the calibration data-set.

exp (ah
j ) – 1

xh
j
 = f (ah

j
) = (2)
        exp (ah

j ) + 1

Figure 8. Plot of observed pH values for the 76 lakes within the
calibration set against average-predicted pH values. The predicted
values are based on the average prediction of the two models (WA-
PLS and the 3-layered back-propagation networks) when all taxa are
used. The fitted line is based on Model I regression.

Calculate the input to the output (k) node:

L
ak = ∑ Wjk · x

h
j (with L: number of hidden nodes) (3)

j=1
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and the corresponding output:

Ŷ
 

k = f (ak) = ak (notice that in our case k=1 and Ŷk = Ŷ) (4)

6. Calculate the error term for the output node:

δ
k
 = (Y – Ŷ ) (5)

and for the hidden nodes:

δh
j = f′ (ah

j ) ∑ δk Wjk (6)
k

7. Update weights on the output layer:

W
jk
 (t + 1) = W

jk
 (t) + ηδ

k
 xh

j
(7)

and the hidden layer:

Wij (t + 1) = Wij (t) + ηδh
j xi (8)

While network errors are larger than some preferred limit or the
number of iterations is smaller than the maximum number of itera-
tions, repeat steps 4–7.
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