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Abstract

Long term environmental records for lake and river ecosystems provide a valuable
generic tool for water quality management. These data sets can play a pivotal role in
determining natural baseline conditions, detecting early evidence of change, identifying
the causal mechanisms of water quality deterioration, and in gauging the success of
remediation menasures. At most sites, however, such data are sparse or completely
lacking. New advances in paleolimnology, that is the study of past environments based
on the analysis of sediments, offer considerable potential for reconstructing these
historical records. This paleolimnological approach is illustrated by way of water
quality research on three ecosystems in Québec, Canada. Lake St-Augustin is a small
lake characterized by episodes of bottom-water anoxia and summer blooms of
cyanobacteria that result in its municipal closure to swimming and other lake activities
for several weeks each summer. A paleolimnological analysis based on fossil diatoms
showed that there have been four phases of nutrient enrichment over the last 240 years
coinciding with initial colonisation and land development (1760-1900), farm
development (1900-1950), increased fertiliser use and intensification of agriculture
(1950-1980), and major road and residential expansion (1980-present). The
paleolimnological application of diatom-based transfer functions for total phosphorus
analysis of Lake St-Charles, the principal drinking water supply for Québec City,
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showed that substantial changes took place in the lake coincident with the raising of
water level in the 1930s. There was no evidence of increasing eutrophication since that
time, contrary to public perception. Finally, geochemical analysis of sediments in the
St-Lawrence River showed greatly reduced concentrations of heavy metals and other
pollutants over the period 1960-90, but the paleolimnological record also underscores
the need for ongoing improvements in pollution control measures.

Introduction

The restoration and protection of freshwater ecosystems is an increasingly important
priority for many environmental and conservation agencies throughout the world. A
common problem in water quality management is the absence of reliable long term data
series that provide information about the natural (pre-anthropogenic) “baseline”
conditions in lakes and rivers that can be used to gauge the importance of measured or
perceived changes in the present-day environment. For some freshwater issues it is
important to detect early evidence of change and to know for how long that trend has
persisted. This in tum raises questions such as whether any changes in key water quality
variables are accelerating, whether these values have moved outside the bounds that
were typical of the lake or river in the past, and whether there are natural cycles of
variability to consider. For some issues it may be important to date precisely any past
shifts in water quality and thereby identify causal changes in the surrounding
catchments. Finally, for those lakes and rivers undergoing costly rehabilitation, it is
important to determine how fast the waters are recovering, and to what extent the
environment is retuming to conditions prior to industrial, urban or rural development.
Such information will help to guide ongoing treatment decisions and to set realistic
legal or management goals (Rast and Holland 1988), as well as give important feedback
to stakeholders including regulatory and funding agencies, politicians and the public.
All of these questions require detailed long-term records, but in most cases such data are
sparse or completely lacking.

Over the last two decades, paleolimnology, that is the study of past environments
based on the analysis of lake sediments, has come to prominence with a suite of new
high resolution sampling and dating protocols, new analytical approaches and refined
statistical techniques for model building and application. Paleolimnological approaches
have achieved success in helping to understand how lakes and their associated drainage
basins respond to many types of environmental change including acidification, drought,

temperature and other climatic shifts, nutrient enrichment and pollution by
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contaminants (reviewed in Smol 2002). Of special interest to the management of lake
water quality, these techniques now allow a detailed, high-resolution record of
environmental variables to be reconstructed on the basis of sediment cores obtained
from lakes, ponds, reservoirs, wetlands, peatiands and large rivers. Paleolimnological
analysis provides a compelling example of how a generic (global) approach can be
applied to specific sites, although regional and local knowledge is still necessary for
reliable interpretations.

In this chapter we describe the basic steps in paleolimnological analysis and then
examine three case studies in the province of Québec, Canada, illustrating the types and
utility of this approach. We first examine Lake St-Augustin where the appearance of
cyanobacterial blooms has resulted in restrictions on the use of this lake for recreational
purposes. Our second example is Lake St-Charles, drinking water supply for the city of
Québec, where perceived changes in water quality as well as recent limnological
measurements from the lake have created public concern. Our third example is the St-
Lawrence River where an expensive program to identify and control industrial pollution
has raised questions about the degree of recovery and the efficacy of ongoing control
measures. Finally we conclude by summarizing some of the strengths, limitations and
additional requirements of the paleolimnological approach to water quality monitoring
and management.

Paleolimnological Analysis

The key steps in paleolimnological analysis are sediment coring, splitting and dating;
geochemical and paleobiological analysis of the subsamples; and the development and
application of transfer functions to reconstruct past environmental conditions (Fig. 1).

Sediment sampling and dating

Sediment coring is typically performed in the central, deepest water part of the lake to
provide an overall integrative assessment of lake water conditions because this is where
sediments from littoral and pelagic zones accumulate through sediment focusing
processes (Blais and Kalff 1995). Cores taken from this accumulation zone within lake
basins generally provide the most detailed (highest temporal resolution) and continuous
paleolimnological records. However, local bays may have separate water quality
problems (see the preceding chapter) and therefore require separate sampling and
analysis. Decpwater sampling also minimizes wind-driven resuspension of sediments
while maximizing the possibility of anoxic conditions that will tend to reduce effects of
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Fig. 1. Outline of the palcolimnological approach to environmental rcconstruction (modificd from Dixit et
al. 1992).

bioturbation, that is the disruption of sediment profiles caused by the burrowing and
feeding activity of benthic animals.

In most cases, lake sediments are deposited in a continuous fashion through time,
with the most recent material overlying older sediments. Occasionally some problems
in stratigraphic integrity occur (e.g., bioturbation, wind-induced turbulence), but these
problems can often be identified and assessed. An undisturbed and continuous record of
sediments can be retrieved from most lakes using a wide variety of coring techniques,
usually including rod-driven piston corers (Livingstone-type), gravity corers (e.g.,
Kajak-Brinkhurst, Hongve, Glew, Limnos, and many others), or chamber-type samplers
(e-g., freeze corers). The advantages and disadvantages of these different types of corers-
with respect to sediment core collection and extrusion are discussed in detail by Glew et
al. (2001).

The sediment chronology is typically established using isotopes. The radioisotopic
decay of the naturally occurring ?'°Pb is now the method of choice to calculate dates of
sediment layers over the recent past (up to about 150 years ago), whereas '‘C
measurements can be used to estimate dates over the millennia. In some cascs, a
surprisingly high degree of temporal resolution (annual to sub-annual) can be attained in
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sediments with annual layers (couplets) called varves. A variety of other
geochronological techniques are available including ’Cs and *'Am released by
nuclear weapons testing and the nuclear industry (reviewed in Bradley 1999; Appleby

2001).

Sediment analysis - the importance of diatoms

Diatoms (class Bacillariophyta) are an important component of algal assemblages in
lakes, comprising a large portion of total algal biomass over a broad spectrum of lake
trophic status. They are valuable indicators for water quality monitoring (Stevenson and
Smol 2003) and have been used extensively in paleolimnological assessments of
changes in lake trophic state (reviewed in Hall and Smol 1999). Diatoms are excellent
paleo-indicators because their siliceous cell walls (frustules) which can be identified to
species level are generally abundant, diverse, and well preserved in lake sediments. It is
common to find several hundred taxa in a single sediment sample, providing
considerable ecological information concerning lake eutrophication. Diatoms also
respond rapidly to eutrophication and recovery. Their rapid growth and immigration
rates and the lack of physical dispersal barriers ensure there is little lag-time between
perturbation and response, thereby making them early indicators of environmental
change. Moreover, the environmental optima and tolerances of many taxa are generally
well known; however, species may respond directly to variables related to lake trophic
state, such as phosphorus and nitrogen, but also indirectly to related limnological
variables (e.g., stratification patterns, water transparency and depth, ionic concentration
and composition, and other water chemistry variables). A major challenge for the
paleolimnologist is to determine which environmental variables are related to species
assemblages, and to effectively use these inferences in a paleoenvironmental context.

Sediment analysis - other indicators

Given the increased relevance of paleolimnological studies to contemporary limnology
and management, greater attention is now being given to organisms other than diatoms,
in an effort to broaden the reconstructions to other trophic levels and communities.
Holistic or multi-disciplinary approaches (e.g., diatoms, chrysophytes, algal pigments,
zooplankton, benthic invertebrates, macrophytes [via plant macrofossils such as leaf
tissue]) used in conjunction with transfer function techniques offer a broader
perspective of the response of lakes and rivers to disturbance. For example, it is now
possible to infer past fish population structure from aquatic inscct and zooplankton
remains (e.g., Uutala 1990; Jeppesen et al. 1996) and address the problem of historical
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A. ambigua and slow rise in the proportional abundance of others such as the small
benthic Fragilaria pinnata, suggesting the gradual onsct of anthropogenic effects during
this initial stage of human colonisation, forest use and land development (nearby
Québec City was founded in 1608).

A substantial change took place over the period 1900-1950 (Fig. 3, zone 2), a
period of major decline in A. ambigua and Cyclotella spp., sustained importance of F.
pinnata, and the appearance of Stephanodiscus hantzschii, a small centric diatom
species that is indicative of strongly polluted conditions. This would have corresponded
to a period of major farm expansion and agricultural development of the catchment. A
third abrupt change characterized the transition to post-World War Il conditions (late
1940s to late 1970s; Fig. 3, zone 3). At this time the new species that had arrived in the
previous period such as Asterionella formosa and Fragilaria crotonensis became
important subdominants, and S. hantzschii accounted for up to 45% of the total counts.
These observations imply greatly accelerated enrichment, and correspond to the post-
war intensification of agriculture and the massive increase in fertiliser application that
occurred in many parts of the world at that time.

The final stage in the sediment record is for the period late 1970s to the present and

shows co-dominance by the pollution-tolerant taxa F. crotonensis and S. hanizschii (Fig.

3, zone 4). This period corresponds to the major cxpansion of residential developments
and road construction within the lake’s catchment, including a major highway. The
increased occurrence of (exotic) salt-tolerant species in recent sediments reflects the
inwash of salts used for the de-icing of roads during the winter months. These
observations show that the degradation of Lake St-Augustin is the result of a long
history of anthropogenic impacts, and that the ultimate restoration of this waterbody
must take a similarly long-term perspective. In future palcolimnological studies of this
lake it will be of great interest to identify the period of onset of cyanobacterial blooms
given that these are the primary water quality concern. One approach towards this is the
use of pigment markers in the sediments, as applied, for example, to lakes in the
Canadian Prairies (Hall et al. 1999).
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late 1990s showed that this reservoir was showing signs of enrichment, with complete
depletion of bottom water oxygen (anoxia) in the deepest part of the lake in late summer
and late winter (Fig. 4). Moreover, some local residents believed that the lake was
rapidly deteriorating in quality.

In order to estimate the extent of recent changes in trophic status and to identify
critical periods of past anthropogenic disturbances, a paleolimnological analysis of Lake
St-Charles sediments was undertaken in 1997 by Tremblay et al. (2001). Quantitative
estimates of past total phosphorus (TP) concentrations in the water column of Lake St-
Charles were obtained by applying a diatom-TP reconstruction model developed for 54
lakes located in south-eastern Ontario (Canada) on fossil diatom assemblages from a 28
cm long sediment core. The timing of changes in the fossil diatom record was estimated
by 2'%b dating. The study revealed changes in fossil diatom assemblage composition
during the past ca. 150 years (Fig. 5), with the most striking biological and physico-
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chemical changes occurring immediately afier 1934. This date coincides with the
construction of a dam, which raised the lake water level by 1.5-2 m. This modification
was accompanied by significant shifis in diatom community structure, cspecially in the
planktonic/benthic ratio (with increases in planktonic diatoms Cyclotella stelligera and
Aulacoseira distans), and by changes in the physico-chemical characteristics of the
sediments. Paleoproductivity increased at the same time, but remained more or less
stable following conservation efforts between 1950 and 1970 (e.g., construction of a
sewage treatment system).

The fossil diatom community structure indicates that mesotrophic conditions
prevailed during the recent history of Lake St-Charles, and that diatoms typical of
eutrophic conditions never became established in the lake. The diatom-inferred
quantitative reconstruction of lake water total phosphorus (Fig. 6) revealed a slight
decrease in total phosphorus over time, from close to 17 pg:L"' prior to 1887 to about 13
gL in recent times.

The fossil diatom analyses indicate that Lake St-Charles has not experienced
significant recent changes in trophic status due to increased human activities in its
drainage basin. However, our geochemical analyses show a sharp rise in metal
concentrations (especially Fe, Mn, Cu, Pb and Zn), beginning in the late 19" century,
reaching a plateau by the late 1970s (Fig. 7), which may be attributed to increased
atmospheric pollution since the beginning of intense human colonization in the lake’s
catchment and surrounding areas. This in combination with the advanced mesotrophic
status of the lake indicates the ongoing need for careful management of the watershed to
prevent further changes in this important urban freshwater resource.

It will of interest in the future to determine at what point in time the bottom waters
of Lake St-Charles became anoxic. One approach with considerable promise is the use
of chironomids as paleo-indicator organisms. Some of these species have relatively
narrow tolerances and require oxygenated conditions while others can tolerate low
oxygen and anoxic conditions. Moreover, the head capsules of these insect larvae are
relatively resistant to decomposition and therefore remain well preserved in the
sediments (see Smol 2002). This approach has been applied with success to lakes in the
Canadian prairies where the results showed that anoxic bottom-water conditions
occurred well before the arrival of European settlers, and that the lakes were naturaily
eutrophic (Hall et al. 1999).
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Paleolimnology of a Large River Ecosystem

The St-Lawrence River runs 500 km from Lake Ontario to the sea and is a major
resource for navigation, industry, and agriculture. Additionally, it is the drinking water
supply for almost half the population of the province of Québec, and is a rich ecosystem
with a diversity of wildlife habitats (Vincent and Dodson 1999 and references therein).
The river has been severely impacted over the course of the 20th century by industrial
and other human activities. Remediation work began in the 1970s, and in the 1980s and
90s major efforts were undertaken to curb the pollution by major industries. Are these
efforts resulting in improvement, and how far is the present-day environment from
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natural baseline conditions?

A problem in applying paleolimnological methods to river ecosystems is that fast
flowing currents preclude the deposition of sediments, and flood events can completely
scour the stream or river bed (Smol 2002). Furthermore, rivers tend to be well-
oxygenated and large benthic populations of animals can result in substantial
bioturbation. Despite these limitations, sediment cores have been successfully obtained
from several parts of the St-Lawrence River, especially the more slowly flowing fluvial
lakes (Fig. 8).

A detailed geochemical analysis was undertaken of a >'°Pb-dated sediment core
from Lake St-Louis, immediately upstream of Montréal (Table 1; Carignan et al. 1994),
This analysis showed how very high concentrations of organic contaminants were
present in the river in the late 1950s and 60s, and dropped by a factor of 5-10 by 1990.
These encouraging signs of improved water quality are also evident from the analysis of
trace metals, with substantial reductions in cadmium, copper, lead and zinc. On the
other hand, changes in chromium and nickel levels were relatively minor. Furthermore,
concentrations of all metals still lay 2-7 times above the background values from pre-
industrial strata indicating considerable room for ongoing improvement. These analyses
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Table 1. Contamination of sediments in Lake Saini-Louis, St-Lawrence River. The dala are compiled
from the text and Fig. 6 of Carignan et al. (1994). Pre-industrial values are for the bottom 35-45 cm of a
sediment core, > 130 years before present, containing 1.1% organic carbon. The mclal values are in

ppm and the organic conlaminant values arc in ppb.

Contaminant Pre-industrial Max. during the 1960s 1990
Trace metals

Cd 0.15 35 1
Cr 62 140 120
Cu 17 70 48
Ni 32 70 60
Pb i5 72 38
Zn 78 750 260
Organic contaminants

PCB #118 0 10 2
Mirex 0 08 0.1
DDD 0 8 0.2

also draw attention to the dangers of dredging sections of the St- Lawrence River which
could result in resuspension and remobilization of sediments that were heavily
contaminated in the middle of last century. Additional paleolimnological work has been
undertaken in the St-Lawrence fluvial lakes to reconstruct changes in the riverine algal
communities and to examine changes in macrophyte (water weed) biomass (Reavie et al
1998). The results from Lake St-Frangois sediments indicated a marked shift towards
high macrophyte populations from the 1930s onwards. Eutrophic diatom taxa were
present at their highest proportional abundance during the middie of last century, and
then showed some decline in importance up to the end of the record (1990) indicating a
recent improvement in water quality and a positive response to rehabilitation and
control strategies. There were substantial differences between the paleolimnological
records from Lake St-Frangois and Lake St-Louis, indicating the heterogeneous nature
of large river ecosystems and the need to consider local variability.

Paleolimnological Approaches to Monitoring ' L S Lt

Conclusions

In this chapter, we have provided some of the many examples of how paleolimnological
studies based on fossil diatoms and geochemical analysis can be used as powerful tools
for eutrophication research and management. The historical perspective allows the
assessment of natural variability and the establishment of baseline or pre-disturbance
water chemistry conditions as targets for lake rchabilitation. The past decade was
largely devoted to developing and refining diatoms as quantitative bioindicators of lake
eutrophication. Current research includes assessing how a detailed knowledge of local
conditions, for example the seasonal dynamics of the biota and their limnological
environment, can be used to improve the application of transfer functions and further
refine the interpretation of quantitative paleolimnological records.

Studies of diatoms alone do not allow a full assessment of complex food-web
interactions in lakes and rivers, but fortunately there are many other aquatic and
terrestrial biota that leave fossil remains in lake sediments (Smol 2002). For example,
chironomids have been used to monitor deep-water oxygen levels (Quinlan et al. 1998),
and in conjunction with diatoms they will provide a better understanding of the
relationships between changes in upper and lower strata of the water column during
eutrophication. Fossil pigments (including the remains of nitrogen-fixing cyanobacteria)
and diatoms provide a useful measure of the biomass of all major algal groups, as well
as total algal biomass (Leavitt and Hodgson, 2001). The combined use of biogenic silica
analysis (Conley and Schelske 2001), diatoms, and fossil pigments may help clarify the
relative roles of Si, P and N limitation during eutrophication. The combined application
of these various bio-indicators and geochemical methods in multi-disciplinary studies
will greatly strengthen our ecological understanding of lake eutrophication processes, as
well as provide a set of powerful tools for water quality monitoring and management.
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