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Abstract

Different calibrationmethods and datamanipulations are being employed for quantitative paleoenvironmental

reconstructions, but are rarely compared using the same data. Here, we compare several diatom-based models

[weighted averaging (WA), weighted averaging with tolerance-downweighting (WAT), weighted averaging

partial least squares, artificial neural networks (ANN) and Gaussian logit regression (GLR)] in different

situations of data manipulation. We tested whether log-transformation of environmental gradients and

square-root transformation of species data improved the predictive abilities and the reconstruction capabilities

of the different calibration methods and discussed them in regard to species response models along environ-
mental gradients. Using a calibration data set from New England, we showed that all methods adequately

modelled the variables pH, alkalinity and total phosphorus (TP), as indicated by similar root mean square

errors of prediction. However, WAT had lower performance statistics than simple WA and showed some

unusual values in reconstruction, but setting a minimum tolerance for the modern species, such as available in

the new computer program C2 version 1.4, resolved these problems. Validation with the instrumental record

fromWalden Pond (Massachusetts, USA) showed thatWA andWAT reconstructed most closely pH and that

GLR reconstructions showed the best agreement with measured alkalinity, whereas ANN and GLR models

were superior in reconstructing the secondary gradient variable TP. Log-transformation of environmental
gradients improved model performance for alkalinity, but not much for TP.While square-root transformation

of species data improved the performance of the ANN models, they did not affect the WA models.

Untransformed species data resulted in better accordance of the TP inferences with the instrumental record

usingWA, indicating that, in some cases, ecological information encoded in the modern and fossil species data

might be lost by square-root transformation. Thus it may be useful to consider different species data transfor-

mations for different environmental reconstructions. This study showed that the tested methods are equally

suitable for the reconstruction of parameters that mainly control the diatom assemblages, but that ANN and

GLR may be superior in modelling a secondary gradient variable. For example, ANN and GLR may be
advantageous for modelling lake nutrient levels in North America, where TP gradients are relatively short.

Introduction

Quantitative reconstructions of past environments

using freshwater and marine sediment records have

become increasingly accepted over the last decades

(Birks 1998). Inference models based on modern

relationships between biota (such as diatoms)

and the environment [pH, temperature, total



phosphorus (TP), etc.] are routinely applied to fos-

sil biological data in order to infer quantitative

environmental values for periods without adequate

instrumental data coverage (Kauppila et al. 2002;

Ramstack et al. 2003; Siver et al. 2003). In an
attempt to obtain the potentially most reliable

reconstructions, it is beneficial to compare recon-

structed values based on different methods and to

assess critical issues of the methodology employed

(e.g., data screening, transformations) (Birks

1998). However, in light of the large number of

existing models, such considerations have only

rarely been addressed (Korsman and Birks 1996;
Hall et al. 1997).

Recently, artificial neural networks (ANNs)

have been introduced to paleolimnological

research and show promising performance when

modelling pH with diatoms (Racca et al. 2001).

However, the outputs of ANN models have not

yet been comprehensively compared to the outputs

of standard approaches [e.g., weighted averaging
(WA) regression and calibration (ter Braak and

van Dam 1989); weighted averaging partial least

squares regression (WA-PLS) (ter Braak and

Juggins 1993)] in the application to fossil diatom

data, by validation with instrumental data and

through the use of other variables than pH. This

paper is an attempt to fill this gap by comparing

diatom-based reconstructions using common
methods [Gaussian logit regression (GLR), WA

with classical deshrinking (WAclass), WA with

inverse deshrinking (WAinv), WA with tolerance-

downweighting (WAT), and WA-PLS] with esti-

mates obtained by ANNs and with instrumental

records for Walden Pond, Massachusetts.

Data

Training set

The water chemistry and modern surface sediment

diatom data used to develop diatom-based infer-

ence models originate from the United States

Environmental Monitoring and Assessment

Program – Surface Waters (data available via

internet: http://diatom.acnatsci.org/dpdc). In the

northeastern United States (Maine, NewHampshire,
Vermont, Massachusetts, Connecticut, New York,

Rhode Island and New Jersey), 257 lakes were

sampled during July and August 1991–1994.
Details concerning sampling procedures and dia-

tom sample processing are given in Dixit et al.

(1999). A subset of 82 lakes was selected for

model development and environmental reconstruc-

tions in lakes from Vermont, New Hampshire,

Massachusetts and Connecticut (Figure 1; Köster

et al. unpubl. data). The sites from Maine, New

York, Rhode Island and New Jersey were excluded
a priori in order to limit the calibration set to the

geographical region where the lakes for paleolim-

nological studies are located. Model and recon-

struction comparisons presented here are based

on this smaller data set. The main characteristics

of the data set are presented in Table 1 and

the relation of the 82 surface diatom assemb-

lages to major environmental variables and lake

Figure 1. Map of the training set sites in the New England states

Vermont (VT), New Hampshire (NH), Massachusetts (MA),

and Connecticut (CT) and location of the study site Walden

Pond. ME ¼ Maine. NY ¼ New York. NJ ¼ New Jersey.

Grey areas: New England Uplands. Dark grey areas: Coastal

Lowlands/Plateau. Light grey area ¼ Adirondacks. Modified

from Dixit et al. (1999).
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characteristics are illustrated in the ordination
biplot resulting from a canonical correspondence

analysis (CCA; Figure 2).

Fossil data and analogs with training set

For reconstruction purposes, we used fossil diatom

data from a 140-cm-long surface sediment core of

Walden Pond (42�26.30N, 71�20.40W), spanning ca.

1600 years (Köster et al. unpubl. data). The ecolo-

gical interpretation of the fossil diatom assemblages,
the sedimentary stable isotope record as well as the

instrumental data of Walden Pond indicate a clear,

albeit seasonal change in the lake water chemistry to

higher nutrient concentrations during the 20th cen-

tury (starting at about 10 cm depth; Köster et al.

unpubl. data). This change is evident in the ordina-
tion of the fossil percentage data in a principal

components analysis (PCA), with inter-sample dis-

tance scaling and covariance matrix (Figure 3).

The analogs of the fossil samples with the training

set were estimated by means of dissimilarity coeffi-

cients using chord distance (Overpeck et al. 1985),

where fossil samples inside the 75% confidence

interval of the mean minimum dissimilarity coeffi-
cient of the training set samples have good analogs,

samples outside the 75% and inside the 95% con-

fidence interval have poor analogs, and samples

outside the 95% limit have no analogs (Laing et al.

1999). Fit of the fossil samples to the environmental

gradient in the training set was estimated by CCA

constrained to pH and TP as the single explanatory

variables. Fossil samples with a residual distance
inside the 90% confidence interval of the residual

distances of the modern samples to the first CCA

axis have a good fit, and samples outside the 90%

limit have poor fit (Birks et al. 1990).

Table 1. Major characteristics of the diatom and environmental

data of the training set. Ordination results are given for the 189-

species set (cut-off-criterion: 1 occurrence at 1%).

No. of samples 82

No. of species

Total 371

One occurrence at 1% 189

Min. 10 occurrences 121

Species DCA

Lambda 7.2

CCA axis 1

% variance 8.4

CCA axis 2

% variance 4.1

pH

Min. 4.99

Max. 8.6

Mean 7.5

Median 7.6

Length of gradient in DCCA 4.0

% variance in CCA 6.0 ( p ¼ 0.005)

Alkalinity

Min. �9.5

Max. 1858

Mean 399

Median 201.5

Length of gradient in DCCA 4.5

% variance in CCA 6.1 ( p ¼ 0.005)

TP

Min. 0.85

Max. 109.5

Mean 16.1

Median 11

Length of gradient in DCCA 2.6

% variance in CCA 3.4 ( p ¼ 0.005)

DCA¼ detrended correspondence analysis. CCA axes 1 and 2¼
first two axes in a canonical correspondence analysis with 17

environmental variables (see also Figure 2). CCA ¼ CCA

constrained to one variable. DCCA ¼ detrended canonical

correspondence analysis. % variance ¼ percentage of variance

in species data which is explained by this axis or variable.

Figure 2. Environmental variables/sample biplot derived from

CCA including subfossil diatom data from 82New England sites

and corresponding lake water measurements of TP, turbidity

(TSS), chlorophyll a (Chl-a), silica (SiO2), dissolved inorganic

carbon (DIC), magnesium (Mg), sodium (Na), calcium (Ca),

alkalinity (alk), pH, conductivity (Cond), potassium (K),

latitude, lake area, total nitrogen (Tot-N), elevation and total

aluminium (Tot-Al).
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Analog and goodness-of-fit analyses of modern

and fossil samples distinguished two different groups
of core samples (Köster et al. unpubl. data). Samples

between 140 and 9 cm had good analogs and fits,

indicating that the fossil diatom flora is well repre-

sented in the modern training set. With the exception

of levels 4, 3 and 0 cm, the samples from 8 to 0 cmhad

poor analogs, and all levels from8 to 0 cmhadpoor fit

to both pH and TP. The poor analogs in the upper

8 cm were caused by very high abundances of three
species, which are present at lower abundances in the

calibration set (e.g., Asterionella formosa Hassal,

Tabellaria flocculosa (Roth) K€uutz. str. IIIp sensu

Koppen, Fragilaria nanana Lange-Bertalot, likely

synonymous with Synedra delicatissima W. Smith in

the training set). These species show a significant

unimodal response to pH in the training set (Köster

et al. unpubl. data), indicating that useful parameters
were estimated for the pH model. However, only

S. delicatissima and T. flocculosa str. IIIp show a uni-

modal response to TP, in contrast to A. formosa with

no significant response to TP. This may have resulted

in less reliable TP-model parameters for A. formosa.

In summary, the analog analyses indicate that the

reconstructions from 140 to 9 cm are reliable for pH

and TP, and that the reconstructions from 8 to 0 cm

are reliable for pH and probably not precise for TP.

Analog analyses with alkalinity were not carried out,
but as alkalinity is closely correlated with pH, it is

likely to behave similarly.

Instrumental record of Walden Pond

Limnological surveys of the study site (Baystate

Environmental Consultants 1995; Colman and

Friesz 2001) provide instrumental data for valida-

tion of the diatom-inferred values (Table 2). As the

records are not continuous and were established by

different investigators, some details regarding the
variables of interest are detailed below.

The pH ofWalden Pond can change significantly

during the course of 1 year (Table 2), particularly in

the euphotic zone, where planktonic algal growth

takes place and photosynthetic CO2 depletion leads

to pH values up to 9. The arithmetic mean pH of

7.8 for the years 1997 and 1999 is based on 129 and

111 measurements, respectively, dating from all
months and integrating several depths of the epi-

limnion (0–15 m, in 1 m-steps). pH measurements
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Figure 3. PCA scores of fossil diatom samples from Walden

Pond sediments.

Table 2. Instrumental record for pH, alkalinity and TP in

Walden Pond, measured on epilimnetic water (Baystate

Environmental Consultants 1995; Colman and Friesz 2001).

Year 1986 1989 1994 1997 1999

pH

Median n.d. n.d. n.d. 7.9 7.6

Average n.d. n.d. n.d. 7.8 7.6

Min. n.d. n.d. n.d. 6.4 6.4

Max. n.d. n.d. n.d. 9.4 9.4

Number of samples n.d. n.d. n.d. 129 111

Total phosphorus (�g l�1)

Median n.d. 40 10 8.4 6.5

Average n.d. 57.5 <16.7 8.6 6.7

Min. n.d. 10 <10 2.5 4.5

Max. n.d. 140 60 19.5 8.7

Number of samples n.d. 8 12 38 7

Alkalinity (�q l�1)

Median 259 220 152 n.d. n.d.

Average 269 225 155 n.d. n.d.

Min. 214 220 134 n.d. n.d.

Max. 340 240 182 n.d. n.d.

Number of samples 6 8 12 n.d. n.d.

Values preceded by a less than sign (<) indicate measurements

below detection limit. n.d. ¼ no data.
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before 1990 were taken after transport of the water

to the laboratory (Arthur Johnson, Massachusetts

Department of Environmental Protection, pers.

comm.), which may affect significantly the pH of

the samples. Therefore we use only the pH data
based on standard, in situ methods for validation

of the diatom-inferred pH values.

Total phosphorus concentrations were below the

detection limit of 10 �g l�1 during much of the year,

but peaked in summer when intensive recreational

use caused significant external nutrient loading to

the lake (Baystate Environmental Consultants

1995). Therefore, mean annual data for TP camou-
flage the nutrient enrichment over the summer

months that strongly affects the diatom assemblages

(Köster et al. unpubl. data).

In contrast to pH and TP, alkalinity was more

stable throughout the year and thus easier to com-

pare with diatom-inferred values.

Methods

Detrended correspondence analysis (DCA) on the

raw species data indicated high variation in diatom

assemblages with a total variance of 7.2 (Table 1).

Therefore, methods assuming unimodal species

responses to the environmental gradients, such as

CCA, can be applied (Birks 1995). As the distribu-

tions of alkalinity and TP data were skewed, they

were normalized by log10-transformation. Models
based on non-transformed environmental data

were developed for comparative purposes.

Diatom inference models were developed for the

variables pH, alkalinity (alk) and TP, as they

explainedmost of the variation in the surface diatom

data, as indicated by CCA (Figure 2, Table 1).

DCCA (detrended canonical correspondence analy-

sis) with each individual variable as a predictor and
detrending by segments and non-linear scaling indi-

cated gradient lengths of larger than 2 standard

deviations (SD) for all three variables (pH: 4.0, alk:

4.5, TP: 2.6), indicating that methods dealing with

unimodal species responses are appropriate for

model development. Although alkalinity and pH

were highly correlated, we included models

and reconstructions for both parameters. The
performances of the models were compared by

means of the determination coefficient (r2), root

mean square error of prediction (RMSEP), the

mean and maximum bias as well as by the degree of

coherence between the diatom-inferred values and

the instrumental data. Bootstrapped performance

statistics are presented, but comparisons between

different methods are based on leave-one-out cross-
validation (jackknifing), because it was the only

available cross-validation method for ANN. Mean

and maximum bias was calculated using the new

approach presented by Racca and Prairie (2004).

The ordination techniques DCA, DCCA, CCA,

and PCA were performed using the computer pro-

gram CANOCO for Windows version 4.0. The

computer program C2 version 1.4 (Juggins 2003)
was used to develop diatom-based inference mod-

els, to assess their performance, to reconstruct

environmental variables and to calculate the sam-

ple-specific errors using bootstrapping. Aside from

the common procedure for WAT, a new algorithm

was used where small tolerances were replaced by a

fraction (0.1) of the gradient. This strategy was

developed in order to avoid the attribution of very
high weight to rare species with small tolerances

(Steve Juggins, pers. comm.), which otherwise may

lead to low performance estimates (Table 3) and

erroneous reconstructions (Figure 4c).

The models based on ANN were implemented

using Yet Another Neural Network Simulator

(Bon�ee et al. 1998). Principles underlying this

method are described in detail by Racca et al.
(2001). For modelling alkalinity with ANN, one

extreme site was removed, because the difference

between the measured and the predicted value (resi-

dual) of this site was three times greater than the

mean residual of all other sites.

The distribution of species over the environmen-

tal gradients was determined by testing a hierarch-

ical set of response models (Huisman et al. 1993),
implemented in the program HOF (Oksanen and

Minchin 2002). For each species, HOF is returning

the simplest of five possible models skewed (¼
asymmetric) unimodal, symmetric unimodal, sig-

moidal (increasing or decreasing), plateau, no

trend), which does not result in a statistically sig-

nificant rise in the residual deviance. All species

with at least 10 occurrences were selected for this
analysis, which reduced the number of species

included from 189 to 121. For percentage species

data, a binomial error distribution was used in the

program, whereas for square-root-transformed

data, the Poisson distribution was chosen.
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Results and discussion

Performance of different models

In general, the predictive abilities of the models

for pH and alkalinity as reflected by r2jack were

better than those of the TP models (Table 3), a

common feature of training sets including a long
pH and a shorter TP gradient (Hall and Smol 1996;

Dixit et al. 1999; Siver 1999). For pH and alkali-

nity, ANN resulted in the lowest RMSEP (0.23–

0.25), followed by WA-PLS 2 and WAT with

RMSEPs of 0.26–0.28 and WA (0.27–0.30). For

modelling TP, WA-PLS 2 had slightly lower

RMSEP (0.23) than WAclass, WAinv, and ANN,

which performed equally well with RMSEPs
between 0.25 and 0.26. GLR had lower jackknifed

performance, but better apparent performance

than the WA methods for pH and alkalinity

and lower apparent and bootstrapped performance

for TP.

In contrast to WAT using a lower limit for spe-

cies tolerances, such as applied here, WAT without

this option, such as in the former version of C2 and

the programs WACALIB and CALIBRATE, per-

formed less well by ca. 0.1–0.2 in RMSEP (Table 3).

When rare taxa were excluded (Köster et al.

unpubl. data), the performance of tolerance-down-

weighted WA equalled that of the other WA meth-
ods. This confirms results of previous studies (Birks

1994; Wilson et al. 1996), which showed that the

performance of WAT decreases with inclusion of

rare species. This may be explained by the difficulty

of estimating a relatively realistic tolerance value

for species with a low number of occurrences. In

our training set, e.g., a tolerance value of 0.1 and an

optimum of 8.5 was calculated for Fragilaria

construens var. venter, which does not make sense

ecologically and led to low model performance

(Table 3) and unusual reconstructions (Figure 4c).

The definition of a minimum tolerance for species

in the training set, such as implemented in the
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Figure 4. Comparison of diatom-inferred pH. For error values see text. (a) inferred pH produced by different methods. (b) inferred pH

using different species transformations for WAinv and ANN. (c) inferred pH using WAT. WAT old ¼ WAT using the common
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recent version 1.4 of the computer program C2

(Juggins 2003), resolved this problem.

Alternatively, tolerance estimates for species that
do not display unimodal distributions over the gra-

dient may be incorrect. Such taxa were well repre-

sented in our models (44% and 67% for pH and TP,

respectively; Table 4), percentages that are compar-

able to those reported for other diatom training

sets (Lotter et al. 1998; Cameron et al. 1999).

WAT has often been discarded in model choice

for transfer functions because of lower perfor-
mance (e.g., Birks et al. 1990; Hall and Smol

1992; Siver 1999). However, our results indicate

that WAT may be a good alternative to WA for

future inference model developments, if rare spe-

cies are deleted or minimum tolerances are defined.

Transformation of species data

Square-root transformation of the species data did

not considerably affect the performance of anyWA

model with decreases by 0.01 in RMSEP (Table 3).

All WA models behaved similar in this regard for
all variables, therefore only the results for WAinv

are presented as an example. For ANN models, it

resulted in lower RMSEP by 0.05 and 0.09 for

alkalinity and pH, respectively, but only by 0.01

for TP (Table 3). Therefore, we can conclude for

our training set data that species transformation

did not affect the performance of WA models, but
improved the performance of some ANN models.

Transformation of environmental data

Powerful ANN models for alkalinity and TP were
obtained when using log-transformed environmen-

tal data. As RMSEP and bias are given in untrans-

formed units, comparison with log models is

difficult. However, log-transformation resulted in

higher r2jack for all WA models, indicating much

better performance for alkalinity (increase in r2jack
by 0.07–0.18) and fairly better performance for TP

(increase of r2jack by 0.03–0.07). When alkalinity
data were log-transformed, the number of unimo-

dal species responses to this variable increased by

29 and 21 for untransformed and square-root-

transformed species data, respectively. This indi-

cates that log-transformation normalized the

skewed raw alkalinity data, thereby helping to

relate the presumed unimodal species distributions

to alkalinity and thus improving model perfor-
mance. After log-transformation of TP, however,

the number of significant unimodal responses

declined from 40 to 32 for untransformed species

data and from 22 to 20 for square-root-trans-

formed data (Table 4). In this case, log-transforma-

tion did not help to relate species distributions to

the phosphorus data and therefore did not improve

greatly the performance of the TP models. As the
diatoms in our data set responded primarily to pH/

alkalinity and less to the secondary TP gradient,

they were perhaps generally less likely to show

significant responses to TP, whatever the data

manipulation might have been.

Comparison of reconstructions produced by

different models and validation with the

instrumental record

The paleoenvironmental reconstructions for

Walden Pond produced by different methods

showed generally the same pattern for pH and alka-

linity, and to some extent also for TP. Relatively
stable values were obtained for the samples from

140 to 12 cm and a more or less pronounced

Table 4. Number and percentage of species with different

response models for pH, alkalinity, and TP. Note that for the

analyses only 121 species (those with at least 10 occurrences) out

of 189 species were used.

Response

%

pH

%

alk

%

alk log

sq

alk

sq

alk log

%

TP

%

TP log

sq

TP

sq

TP log

Number

1 22 19 23 24 22 67 62 81 80

2 30 59 25 57 38 13 26 19 21

3 1 0 1 0 0 1 1 0 0

4 48 30 56 36 53 32 25 22 18

5 20 13 16 4 8 8 7 0 2

Percent

1 18 16 19 20 18 55 51 67 66

2 25 49 21 47 31 11 21 16 17

3 1 0 1 0 0 1 1 0 0

4 40 25 46 30 44 26 21 18 15

5 17 11 13 3 7 7 6 0 2

alk ¼ alkalinity. TP ¼ total phosphorus. sq ¼ species data

square-root transformed. % ¼ species percentage data. log ¼
environmental data log-transformed. Species response code [for

details see Huisman et al. (1993)]: 1¼ no trend. 2¼ increasing or

decreasing trend. 3 ¼ increasing or decreasing trend bounded

below the maximum attainable response (¼ plateau). 4 ¼
symmetrical unimodal response curve. 5 ¼ skewed unimodal

response curve.
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increase is evident between 11 cm depth and the

surface (0 cm) (Figures 4–6). This change reflects

the recent, major shift in fossil diatom assemblages

as demonstrated by the PCA sample scores

(Figure 3). Nonetheless, in some cases the absolute
diatom-inferred values differed between methods.

pH

All WA models and WA-PLS 2 produced very
similar pH reconstructions, therefore we only pre-

sent WAinv and WATinv for model comparison

(Figure 4a). From 140 to ca. 10 cm, GLR and

ANN reconstructed lower values than the WA

models by ca. 0.4 units. From 8 to 0 cm,GLRvalues

approximated the WA reconstructions, whereas

ANN values remained lower by ca. 0.4 units. The

methods that estimated most closely the measured
data were WAinv, WATinv and GLR, despite the

lower performance statistics of the GLR model.

Different species transformations caused some dif-

ferencesbetween themodeloutputs. Square-root trans-

formation led to higher values by 0.3 units for WAinv

inferences (Figure 4b), as well as to lower values by

0.4 units for ANN reconstructions in the samples

from 11 to 0 cm (Figure 4b), compared to reconstruc-
tions using percentage species data. However, the

differences remained well within the overlapping

bootstrapped error ranges of the methods (0.32 and

0.33 for WAinv; 0.25 and 0.34 for ANN) indicating

that the pH reconstructions are not significantly

affected by different species data transformations.

The differences betweenWAT-based reconstruc-

tions without defining a minimum tolerance (com-
mon method) and with tolerance limit (new

method) are large in five samples, with deviations

around 0.8 pH units (Figure 4c). As all other meth-

ods reconstructed similar values to those generated

by the new WAT method, without yielding abrupt

pH changes in the past, the old method appears to

produce unrealistic deviations in reconstructions.

This problem is likely related to the unreliable
tolerance estimates for rare species in the training set

andcanbeavoidedbydefiningaminimumtolerance,

as discussed above (Steve Juggins, pers. comm.).

Alkalinity

Back-transformed diatom-inferred alkalinity

values were comparable for all WA models

(Figure 5a). ANN and GLR reconstructed lower

values by ca. 100 �eq l�1 from 140 to 9 cm. From

8 to 0 cm, GLR approximates the WA recon-

structed values, whereas ANN values remained

lower than the WA values by ca. 200 �eq l�1

(Figure 5a). The difference seemed to be larger in

recent sediments, with a maximum divergence in

diatom-inferred alkalinity between the ANN and

the WAinv model of ca. 250 �eq l�1, but the log-

alkalinity values showed that the differences were

equally large throughout the whole sediment

sequence (Figure 5b). The exponential function

underlying the back-transformation of log values
boosted the reconstructed values (and the asso-

ciated prediction errors) in the upper levels and

made them appear artificially high. Actually, the

differences between the ANN and WAinv recon-

structions were within the overlapping errors

of both inferences, which intersect by about

50–100 �eq l�1 (data not shown).

Each of the methods inferred closely one of the
different measured alkalinity values, but over- or

under-estimated the other values, with one value

outside the error limit of ANN and WA recon-

structions, respectively. The coincidence of these

deviations with poor analogs for the levels 8–0 cm

suggests that the no-analog situation plays a role

in the observed pattern. When species, which

are rare in the training set (here, A. formosa and
F. nanana), become a dominant part of the fossil

assemblage, unusual reconstruction values can be

the result. Classical methods are known to extra-

polate better at the end of gradients (ter Braak

1995), a situation that may be present in the recent

sediments of Walden Pond. However, in our exam-

ple WAclass (data not shown) andWAinv resulted in

the same reconstructions, indicating that both
methods dealt likewise with the no-analog situa-

tion. The only method that approximated each of

the values sufficiently was GLR, despite its lower

performance. In our case, GLR appears to provide

a ‘‘mean’’ reconstruction between WA and ANN,

which simulates a consensus reconstruction devel-

oped by combining results of different procedures,

such as recommended by Birks (1995). The recent
declining tendency in alkalinity was not evident in

the reconstructions, perhaps indicating a delayed

response of the diatoms to the change.

Different data transformations resulted in differ-

ent alkalinity reconstructions from 140 to 10 cm,
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with the largest differences between models

with and without square-root transformation

(Figure 5c). In the upper 8 cm, the reconstructions
of the models converge, except of the model using

untransformed alkalinity data and square-root

transformation of species data, which exceeded by

100–170 �eq l�1 the other inferences. The WA

alkalinity models without species transformation

produced similar reconstructions to those of

ANN and GLR displayed in Figure 5a, suggesting

that WA models without species transformation
approximated better the consensus reconstruction,

as discussed above. Noticeably, the square-root

transformation of species abundances, which nor-

mally should stabilize variances, resulted in higher

intra-series variability, as indicated by higher SDs

in the reconstructed data (33 vs. 6 �eq l�1 for

the reconstructions from 140 to 10 cm for WAinv

sqr and WAinv, respectively, note that this is also
the case for pH and TP reconstructions). This may

be a disadvantage when quantitative reconstruc-

tions are to be correlated with other independent

proxy estimates.

Total phosphorus

From 140 to 9 cm, all methods produced a similar,

stable trend, but different values between ca. 3 �g l�1

for GLR and ca. 7 �g l�1 for WA and WAT
(Figure6a).From8 to0 cm,ANNandGLR-inferred

values increased by around 4 �g l�1, whereas WAinv

and WAT-inferred values continued to fluctuate

in the same range as in the other samples, with a

slight trend to lower values. The weighted averaging

methods resulted in more inter-sample varia-

bility than ANN and GLR throughout the core

(Figure 6a).
When different data transformations were

applied in WAinv, the reconstructed values differed
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Figure 5. Comparison of diatom-inferred alkalinity. For error values see text. (a) inferred alkalinity produced by different methods. (b)

inferred log-alkalinity. (c) inferred alkalinity using different data transformations. WAinv ¼ weighted averaging with inverse

deshrinking. WATinv ¼ weighted averaging with tolerance-downweighting and inverse deshrinking. GLR ¼ Gaussian logit regression
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transf. ¼ no data transformation.
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by 3 �g l�1 (Figure 6b). Most reconstructions

showed no trend, except of the log TP model with-

out species transformation, which increased in the

upper levels by 2 �g l�1. The model with untrans-

formed TP data and square-root-transformed spe-
cies data resulted in negative values and is therefore

not presented.

Almost all reconstructed TP values were smaller

than 10 �g l�1, corresponding well to the measured

mean annual TP of 10 �g l�1 and less. The

WAinv model using untransformed species data,

GLR and the ANN model tracked best the impor-

tant assemblage change and higher seasonal TP
maxima (Table 2) by inferring increasing TP values

in the upper levels, although they had similar or

lower statistical performance as the other WA

models (Table 3). Similar results were obtained in

some Ontario lakes, where the best accordance of

diatom-inferred TP with the instrumental record

was achieved using untransformed species data in

WA (Hall et al. 1997). In our case, this result is

likely due to the fact that few species dominate the

recent samples. Their high abundances helped

detect a signal that was otherwise down-weighted
by transformation. Another explanation may be

found in the modern species response to TP. The

untransformed TP and species data resulted in 40

significant skewed and symmetric unimodal distri-

butions compared to about the half of that when

square-root-transformed diatom data were related

to TP (22) and log TP (20) (Table 4). It appears that

the square-root transformation of species data flat-
tened unimodal species responses to TP to sigmoi-

dal or non-significant ones, thereby removing

information that may be useful for environmental

inferences performed with this calibration set.

However, square-root transformation may have

no effect at all in reconstructions using more
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Figure 6. Comparison of diatom-inferred TP. For error values see text. (a) inferred total phosphorus produced by different methods. (b)

inferred TP using different data transformations. WAinv ¼ weighted averaging with inverse deshrinking. WATinv ¼ weighted averaging

with tolerance-downweighting and inverse deshrinking. GLR ¼ Gaussian logit regression (¼ maximum likelihood). ANN ¼ artificial

neural networks. Instrumental ¼ measured TP. log sqr ¼ log TP, square-root-transformed species data. log ¼ log TP, untransformed
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diverse fossil assemblages with low abundances

displayed by many species.

Reasons for the better correspondence between

the ANN reconstructed TP values and the instru-

mental record may be that this method copes better
than WA with poor-analog situations and/or high

percentage of non-unimodal species responses. The

latter is a known advantage of the ANN models

(Racca et al. 2001). Therefore, thismethodmayprove

advantageous for modelling lake nutrient status in

regions where the development of TP models using

weighted averaging is challenging due to relatively

short TP gradients, such as in North America.
As the TP models had lower performance in

comparison to the pH and alkalinity models, the

TP reconstructions may be considered less reliable.

Nonetheless, the comparison with the instrumental

record showed that our models were suitable for

the reconstruction of past TP concentrations. Also,

reconstructions of TP for lake Saint-Augustin in

Qu�eebec using our TP model without species trans-
formation showed good agreement with measured

TP (K. Roberge, unpubl. data).

Conclusions

The comparison of different methods in diatom-

based reconstruction and validation by the instru-

mental record showed that weighted averaging

with classical and inverse deshrinking as well as

with and without tolerance-downweighting, GLR

and ANN all provided reliable inference models
and reconstructions for pH and alkalinity. In our

study from Walden Pond, this was even the case

under poor-analog conditions. However, using the

common algorithm for WAT resulted in lower per-

formance statistics than simple WA and in unusual

reconstruction values, because rare species with

small tolerances were highly weighted. Defining a

minimum tolerance for the modern species, such as
available in the new computer program C2 version

1.4, resolved these problems. While WAT was

often discarded for transfer function development

in previous studies because of low performance,

our results indicate that it may be an equally useful

tool for paleoecological studies as simple WA.

Not all WA models for TP did track a nutrient

enrichment which was evident in the species
assemblages and which was inferred by the statis-

tically equally well performing ANN and GLR

models. These results suggest that the tested meth-

ods are equally suitable for the reconstruction of

parameters that mainly control the diatom assem-

blages, but that ANN and GLR may be superior in

modelling a secondary gradient variable. For
example, ANN and GLR may be advantageous

for modelling lake nutrient levels in North

America, where TP gradients are relatively short.

Logarithmic transformation of skewed environ-

mental data improved much the model perfor-

mance of alkalinity, but only slightly the TP

models. It appears that the primary response of

diatom species to the main gradient inhibits the
sensitivity of model performance to data manipu-

lations regarding the secondary gradient.

Square-root transformation of species data did

not improve the performance or the paleoecologi-

cal inferences of the WA models, but was advanta-

geous for the ANNmodels. Untransformed species

data resulted in better accordance of the TP infer-

ences with the instrumental record using WA, indi-
cating that, in some cases, ecological information

encoded in the modern and fossil species data

might be lost by square-root transformation. In

contrast to our expectations, square-root transfor-

mation of species data did not stabilize variances,

but created more noisy reconstructions than mod-

els without square-root transformation. Thus it

may be useful to consider different species data
transformations for different environmental recon-

structions.

Obviously, these conclusions cannot be general-

ized as they are only based on tests using one

modern and fossil data set. Future work on other

fossil sequences from the same region will assess if

diatom models using ANNs are more widely

applicable.
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