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[1] Snowmelt is a crucial source of water for many shallow
subarctic lakes, but climate models predict that snowfall
will decrease in some regions, with profound ecological
consequences. Here we use lake water isotope data across
gradients of terrestrial vegetation cover (open tundra to closed
forest) and topographic relief to identify lakes that are
vulnerable to desiccation under conditions of low snowmelt
runoff in two subarctic landscapes—Old Crow Flats, Yukon,
and Hudson Bay Lowlands, Manitoba (Canada). Lakes located
in low-relief, open tundra catchments in both landscapes
displayed a systematic, positive offset between directly
measured lake water δ18O over multiple sampling campaigns
and lake water δ18O inferred from cellulose in recently
deposited surface sediments. We attribute this offset to a strong
evaporative 18O-enrichment response to lower-than-average
snowmelt runoff in recent years. Notably, some lakes
underwent near-complete desiccation during midsummer
2010 following a winter of very low snowfall. Based on the
paleolimnological record of one such lake, the extremely dry
conditions in 2010 may be unprecedented in the past ~200
years. Findings fuel concerns that a decrease in snowmelt
runoff will lead to widespread desiccation of shallow lakes
in these landscapes. Citation: Bouchard, F., et al. (2013),
Vulnerability of shallow subarctic lakes to evaporate and desiccate
when snowmelt runoff is low, Geophys. Res. Lett., 40, 6112–6117,
doi:10.1002/2013GL058635.

1. Introduction

[2] Northern lake-rich landscapes are vital for wildlife,
carbon exchange with the atmosphere, and natural resources
utilized by local indigenous communities. Shallow ponds and
lakes (typically≤ 1m depth) are the dominant basin type in

these regions. Numerous studies have examined recent changes
in the distribution and surface area of these water bodies; some
have reported lake expansion (e.g., in the case of thermokarst
lakes), while others have documented water level decline
[Smith et al., 2005; Carroll et al., 2011]. An especially acute
concern is that longer ice-free seasons and increasing impor-
tance of open water evaporation will lead to desiccation of
shallow lakes, as observed in Canada’s High Arctic [Smol
and Douglas, 2007]. In these landscapes, snowmelt is impor-
tant for replenishing shallow lakes and is likely to become
even more crucial as evaporative drawdown intensifies with
continued warming [Schindler and Smol, 2006].
[3] Old Crow Flats (OCF), Yukon, and northwestern Hudson

Bay Lowlands (HBL), Manitoba, are two of Canada’s largest
lake-rich subarctic landscapes. Total surface water areas
(including several thousand ponds and lakes; hereafter referred
to as “lakes”) comprise a significant portion of these landscapes,
and both regions have undergone recent warming. In OCF,
dendroclimatological records indicate anomalously warm con-
ditions during the twentieth century in the context of the past
300 years [Porter and Pisaric, 2011]. Paleolimnological data
from the southern HBL indicate that lakes began to respond
to climate warming in the 1990s [Rühland et al., 2013]. Prior
studies of lakes in these landscapes have identified several
potential future hydrological consequences in response to
continued warming, which will depend upon changes in catch-
ment vegetation, hydrological connectivity, permafrost condi-
tions, seasonal distribution of precipitation, and other factors
[Turner et al., 2010; 2013; Wolfe et al., 2011].
[4] Here we explore the sensitivity of shallow lakes in OCF

and HBL to one hydrological outcome: evaporative lake level
drawdown following winters of low snow accumulation. We
compare multiple measurements of lake water oxygen isotope
composition (δ18Olw) with that inferred from the cellulose
fraction (δ18Oinf-lw) of surface sediments of 70 lakes spanning
a broad gradient of vegetation cover. Winters of very low
snow accumulation occurred immediately prior to several of
the ice-free seasons when we conducted water isotope sam-
pling, whereas the 5 year intervals prior to the water sampling
were characterized by snowfall similar to (HBL) or greater
than (OCF) the 1971–2000 climate normals. This provided a
unique opportunity to identify the characteristics of shallow
lakes in these subarctic landscapes that are most vulnerable
to desiccation under conditions of low snowmelt runoff.

2. Study Areas

[5] Located in the continuous permafrost zone at the north-
ern boreal tree line ~25 km north of the town of Old Crow,
OCF encompasses ~2700 shallow lakes, mostly of thermokarst
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origin (Figure 1). This ~5600 km2 wetland complex, recognized
by the Ramsar Convention for its ecological and cultural impor-
tance, provides habitat for abundantwildlife and supports the tra-
ditional lifestyle of the Vuntut Gwitchin First Nation. OCF is the
former lakebed of Glacial Lake Old Crow [Zazula et al., 2004].
The permafrost and fine-grained glaciolacustrine sediments
inhibit infiltration of surface water. Thus, lake water level fluctu-
ations are mainly reflective of hydrological processes operating
at or near the surface. Lakes have been classified mainly as
snowmelt- or rainfall-dominated, reflecting their predominant
sourcewaters, and are associatedwith forest or tundra vegetation
in their catchments, respectively [Turner et al., 2010, 2013].
[6] HBL is a low-relief landscape that spans continuous and

discontinuous permafrost and traverses the northern boreal tree
line. HBL developed following the end of the Wisconsinan
glaciation and the retreat of the Laurentide Ice Sheet and is un-
derlain by impermeable silts and clays deposited by the Tyrrell
Sea [Dredge and Nixon, 1992]. Consequently, water pools on
the surface creating thousands of lakes; many of which are
formed by thermokarst processes. Near the Hudson Bay coast,
isostatic rebound has produced a series of raised beaches, and
the topographic depressions between them are also often occu-
pied by lakes. Three major ecological zones can be identified
in Wapusk National Park in northwestern HBL: coastal fen
(CF) dominated by tundra vegetation, interior peat plateau-
palsa bog (IPP) that contains small shrubs, and boreal spruce
forest (BSF) (Figure 1) [Parks Canada, 2013].

3. Methods

[7] Lake water and surface sediment samples were retrieved
from 38 snowmelt- (n=17) and rainfall-dominated (n=21)
lakes in OCF (as defined by Turner et al. [2010]) and from
32 lakes spanning the three major ecozones in Wapusk
National Park, HBL (CF: n=18; IPP: n=10; BSF: n=4;
Figure 1). Water samples were collected in 30 ml high-density
polyethylene bottles at ~10 cm depth three times (June, July,
and September) during the ice-free season in OCF (2007–
2008) and HBL (2010–2012). Surface sediments (upper
1–2 cm) were collected in September 2008 in OCF and

September 2012 in HBL using a coring tube (38mm internal
diameter). Cellulose was isolated from the sediments following
several steps designed to remove noncellulose organic
and inorganic fractions [Wolfe et al., 2001, 2007]. Water and
surface sediment cellulose oxygen isotope compositions were
determined at the University of Waterloo-Environmental
Isotope Laboratory (UW-EIL) using conventional techniques
[Epstein and Mayeda, 1953; Wolfe et al., 2007]. Results are
expressed as δ values, representing deviations (‰) from
Vienna Standard Mean Ocean Water (VSMOW) such that
δsample = [(Rsample/RVSMOW) � 1] × 103, where R is the
18O/16O ratio in sample and VSMOW. The δ values are
normalized to �55.5‰ for Standard Light Antarctic
Precipitation [Coplen, 1996]. Surface sediment δ18Oinf-lw

was calculated using a cellulose-water fractionation factor of
1.028 [DeNiro and Epstein, 1981; Wolfe et al., 2001].

4. Results

[8] Comparison of δ18Oinf-lw with δ18Olw showed good
agreement for several lakes in OCF (Figure 2a). These results
were obtained mainly for the snowmelt-dominated lakes,
whereas rainfall-dominated lakes on average possessed
δ18Oinf-lw values ~7‰ lower than δ18Olw. Closer inspection
of the relation between δ18Oinf-lw and δ18Olw revealed that
δ18Oinf-lw best aligned with early ice-free season (mean
June) δ18Olw for the snowmelt-dominated lakes (Figure 2b).
In contrast, all but one of the rainfall-dominated lakes plotted
systematically above the 1:1 line. Time series plots of δ18Olw

for selected lakes of the snowmelt- (OCF13) and rainfall-
dominated (OCF24) categories further demonstrate good
agreement between δ18Oinf-lw and early ice-free season
δ18Olw for OCF13. Yet a much lower δ18Oinf-lw was obtained
from OCF24 compared to all δ18Olw values (Figure 2c).
[9] Similar patterns were evident when comparing δ18Oinf-lw

with δ18Olw for lakes in HBL (Figures 2d–2f ). For lakes in the
BSF and most lakes in the IPP, δ18Oinf-lw was in good agree-
ment with δ18Olw (Figure 2d). In contrast, eight of the 18 lakes
in the CF had δ18Oinf-lw that averaged ~6.5‰ lower than
δ18Olw. Similar to the OCF lakes, δ18Oinf-lw agreed best with

Figure 1. Location of the study areas: (a) Old Crow Flats (OCF), Yukon, (b) northwestern Hudson Bay Lowlands (HBL),
Manitoba. The sampled shallow lakes are identified by numbers, color coded based on their classification (i.e., OCF: snow-
melt-dominated and rainfall-dominated lakes are labeled in blue and red, respectively; HBL: BSF, IPP, and CF lakes are labeled
in blue, green, and red, respectively).
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Figure 2
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early ice-free season (mean June) δ18Olw (Figures 2e and 2f ).
For the lakes that did not display agreement between δ18Oinf-lw

and δ18Olw (mainly in the CF), results were positioned systemat-
ically above the 1:1 line (Figure 2e) and δ18Oinf-lw was lower
than the seasonal range of δ18Olw (Figure 2f ).

5. Discussion and Conclusions

[10] Agreement between δ18Oinf-lw and mean June δ18Olw

for most of the snowmelt-dominated lakes in OCF, as well
as all BSF and most IPP lakes in HBL, can be explained by
high aquatic production during the early part of the ice-free
season. At this time, lake waters are supplied by isotopi-
cally depleted snowmelt runoff that is rich in dissolved
nutrients from interactions with soil and plant organic
matter. In OCF, snowmelt-dominated lakes have higher
concentrations of nutrients including dissolved phosphorus,
silica, and organic carbon compared to rainfall-dominated
lakes [Balasubramaniam, 2012]. Furthermore, incorporation
of isotopic signatures from the early ice-free season by aquatic
cellulose has been identified in paired analyses of seasonal
δ18Olw and surface sediment δ18Oinf-lw from other shallow
boreal lakes [e.g., Wolfe et al., 2012].
[11] We considered several hypotheses to explain the

positive offset in δ18Olw relative to δ18Oinf-lw that is evident
for most of the rainfall-dominated lakes in OCF and some
of the CF and IPP ecozone lakes of HBL. Potential incorpo-
ration of nonaquatic cellulose from terrestrial sources always
poses concern when using sediment cellulose as a lake
water oxygen isotope archive [Sauer et al., 2001], yet this
would not yield a positive offset, since terrestrial cellulose
should be more enriched under the same climatic conditions

[Edwards and McAndrews, 1989]. Organic carbon and nitro-
gen elemental and isotope data for the surface sediments of
these lakes (see Table S1 in the supporting information) also
supports a fully aquatic origin for sedimentary organic
matter, and hence the validity of the inferred positive δ18Olw-
δ18Oinf-lw offset. On the other hand, meteorological records
reveal that three of our water-sampling campaigns were
performed following winters of substantially lower snowfall
(i.e., winter 2007–2008 for OCF and 2009–2010, 2010–2011
for HBL) compared to climate normals (Table 1). Furthermore,
average snowfall was 25% and 44% less during the water-
sampling years in Old Crow and Churchill, respectively,
compared to the average of the 5 years immediately prior.
Although we recognize that precipitation can be spatially
heterogeneous, a meteorological station deployed in central
OCF during our water-sampling years showed good agree-
ment with the Environment Canada meteorological station
records from the hamlet of Old Crow [Turner et al., 2013].
Thus, less snow generated less snowmelt runoff to several
lakes during the water-sampling years, which resulted in more
pronounced isotopic enrichment by evaporation compared to
the time intervals captured by the surface sediments (which
span ~5–10 years based on paleolimnological studies) [e.g.,
Wolfe et al., 2011; MacDonald et al., 2012]. Turner et al.
[2013] identified strong evaporative isotopic enrichment in
OCF lake waters during 2008, following a winter of low snow
accumulation. Our results suggest that a similar evaporative
response explains the positive offset in δ18Olw relative to
δ18Oinf-lw, albeit over longer time scales. These hydrologically
sensitive or “flashy” lakes are mostly situated in catchments
characterized by low-relief terrain and sparse tundra vegeta-
tion where snow cover is vigorously redistributed by wind.
[12] Shallow subarctic lakes that undergo pronounced evap-

oration when snowmelt runoff is low may desiccate. In fact,
this was observed in midsummer 2010 in HBL (Figure 3a),
which may reflect an extreme hydrological consequence of
recent climate warming in this region—warming that has led
to shifts in algal communities in deeper lakes in the southern
HBL [Rühland et al., 2013]. Additional paleolimnological
data suggest that shallow subarctic lakes in northwestern
HBL, like their high-arctic counterparts, may indeed be
approaching the “final ecological threshold” [cf. Smol and
Douglas, 2007]. Lake water δ18O reconstructed from cellulose
δ18O measurements along a 24.5 cm long sediment core re-
trieved from CF lake WAP12, which almost completely
desiccated during midsummer 2010, indicate remarkably sta-
ble hydrological conditions over most of the past ~200 years
(Figure 3b). Although desiccation horizons in lacustrine strata
can be difficult to identify, the WAP12 record appears to
contain no evidence of comparably dry intervals in the past.
[13] Low snowmelt runoff and lake desiccation during

midsummer 2010 may be a sign of things to come for the
HBL and other regions with shallow lakes in catchments
having low-relief and sparse tundra vegetation. Based on

Table 1. Winter (October to April) Precipitation (mm) for Old
Crow (Yukon; Station 2100800) and Churchill (Manitoba; Average
of Stations 5060600, 5060606, and 5060608)a

Period Old Crow Churchill

2001–2002 99.7b

2002–2003 99.3b

2003–2004 135.3b

2004–2005 151.2b 185.6b

2005–2006 >61.9c 165.2b

2006–2007 148.0d 180.2b

2007–2008 35.0d 151.9b

2008–2009 133.5b

2009–2010 62.9d

2010–2011 46.0d

2011–2012 164.9d

Climate normal, 1971–2000 104.3 167.7
Average, years prior to water sampling 121.4 163.3
Average, years of water sampling 91.5 91.3

aEnvironment Canada [2013].
bYears prior to water sampling.
cIncomplete record (not included in average calculation).
dYears of water sampling.

Figure 2. Comparison of measured lake water oxygen isotope composition (δ18Olw) with surface sediment cellulose-
inferred lake water oxygen isotope composition (δ18Oinf-lw) for (a–c) Old Crow Flats (OCF) and (d–f ) northwestern Hudson
Bay Lowlands (HBL) lakes: δ18Olw range versus δ18Oinf-lw (Figures 2a and 2d), mean and range for June δ18Olw versus
δ18Oinf-lw (Figures 2b and 2e), time series of δ18Olw for lakes OCF13 (snowmelt dominated) and OCF24 (rainfall dominated),
WAP02 (coastal fen) and WAP23 (boreal spruce forest), and δ18Oinf-lw (Figures 2c and 2f ). Lake categories and ecological
zones as defined by Turner et al. [2010] and Parks Canada [2013], respectively. Error bars for δ18Oinf-lw represent estimated
uncertainties of ±2.0‰.
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satellite data spanning the past 4 decades, Derksen and
Brown [2012] reported marked reductions in spring (April
to June) snow cover extent over the Northern Hemisphere
and indicated that the rate of snow cover loss from 1979 to
2011 (�17.8% per decade) was almost double the rate of
September sea ice loss during the same period (�10.8% per
decade). Moreover, the lowest spring snow cover extent for

both North America and Eurasia has occurred during the
2008–2012 period; the year 2010 set a record low for North
America. Trends toward declining snow cover are expected
to continue [Derksen and Brown, 2012], although significant
spatial and seasonal differences are projected to occur [Arctic
Monitoring and Assessment Programme, 2011; Krasting
et al., 2013].
[14] For regions that experience a decline in snow cover

extent and reduction in snowmelt runoff with continued
warming, our isotope data coupled with field observations
from two of Canada’s largest lake-rich subarctic land-
scapes indicate that shallow lakes located in low-relief,
open tundra terrain are particularly susceptible to desicca-
tion by evaporation. Such hydrological changes will have
profound effects on wildlife habitat, carbon cycling, and
other aquatic ecosystem services [e.g., van der Molen
et al., 2007; Abnizova et al., 2012].
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