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Comparative physical and chemical limnology of
two Canadian High Arctic regions: Alert (Ellesmere
Island, NU) and Mould Bay (Prince Patrick Island,
NWT)
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Abstract: The physical and chemical limnological characteristics of 65 lakes and
ponds from two areas in the Canadian High Arctic were examined to determine differ-
ences in regional limnology due to geological and vegetational characteristics, as well
as other climate factors. Sites in the Alert region of northern Ellesmere Island had rela-
tively low concentrations of total phosphorus (median TP = 9.1 ug1™), and total N
(median = 0.465 mgl’l). Dissolved organic carbon (DOC) concentrations were rela-
tively low (median = 2.7 mg 1h reflecting the sparsity of vegetation in the region.
Within the Alert dataset, there were pronounced differences in water chemistry be-
tween small tundra ponds and larger, deeper lakes. The first axis of a principal com-
ponents analysis of the Alert dataset reflected conductivity and nutrient gradients (A =
0.28), while the second axis (A = 0.20) was related to metal concentrations. Mould Bay
sites on Prince Patrick Island had relatively high concentrations of TP (mean =
16.5 ugl’l), total N (mean = 0.616 mgl’l), and DOC (mean = 6.7 mgl’l). Mean total N
and DOC were at the highest levels yet measured from any similar high arctic limno-
logical survey, while mean TP was the second highest high arctic value yet recorded in
our surveys. A principal components analysis of the Mould Bay data indicated that the
two dominant gradients in the dataset were conductivity and related variables (A =
0.30) and nutrients (A = 0.19). The differences in water chemistry variables between
Mould Bay and all previous high arctic surveys is attributable to the relatively dense
vegetation and deep soils present at Mould Bay relative to Alert and other high arctic
regions.
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Introduction

The Canadian High Arctic is a region that has historically been underrepre-
sented in limnological research (SCHINDLER 2001). This can be attributed in
large part to the logistical problems involved in sampling such remote loca-
tions. Until recently, detailed limnological studies in the North American Arc-
tic have been restricted to those undertaken in arctic Alaska (see HOBBIE 1997)
and a small number of lakes from Cornwallis Island (e.g. SCHINDLER et al.
1974, KALFF & WELCH 1974). More recently, a considerable volume of litera-
ture has been developed on the limnology of lower arctic and subarctic regions
of northern Canada and Alaska (e.g. GREGORY-EAVES et al. 2000, RUHLAND &
SMoL 1998, PIENITZ et al. 1997 a, b, KLING et al. 1992), arctic Fennoscandia
(e.g. KOrRHOLA et al. 2002, WECKSTROM & KorHOLA 2001, BLoM et al. 2000,
WECKSTROM et al. 1997) and Siberia (DUFF et al. 1999). However, research
into the freshwaters of high arctic regions remains sparse.

With increasing awareness of the sensitivity of high arctic ecosystems and
their vulnerability to ongoing climatic and environmental change (e.g. ROUSE et
al. 1997), surveys have recently been initiated to document the baseline limno-
logical conditions from around the High Arctic (e.g. ANTONIADES et al. 2003,
MICHELUTTI et al. 2002 a, b, HAMILTON et al. 2001, ELLIS-EvANS et al. 2001,
L et al. 2001, HAMILTON et al. 2000, DouGLAS & SMOL 1994), as well as into
other aspects of high arctic limnology (e.g. VAN DONK et al. 2001, VILLENEUVE
et al. 2001, MARKAGER et al. 1999, QUESADA et al. 1999, VEZINA & VINCENT
1997). Nonetheless, considerable additional study is required to understand the
dynamics of these polar freshwater systems, as the High Arctic represents a vast
and varied region with many ecological, climatic and geological gradients.

Shallow tundra ponds dominate typical high arctic landscapes. These
ponds (defined as being <2m deep, and freezing completely in winter) differ
markedly from lakes in their limnological characteristics. Due to their small
volumes, tundra ponds have low capacity for the dilution of solutes, and their
chemical limnological characteristics are thus highly sensitive to any change
in external inputs (DouGLAas & SMmoL 1999). Seasonal variations in arctic
physical and chemical limnology are largely dependent on the extent and dura-
tion of ice within limnic systems, which controls interactions with the atmos-
phere and inputs of solar radiation (SMoOL 1988). High arctic lakes are gener-
ally completely frozen for over nine months of the year, and in some regions,
lake ice is perennial. Ponds, by comparison, thaw and freeze earlier than lakes
due to their lower thermal capacities, and are completely ice free for several
months each year. As a result, while water temperatures in high arctic lakes
generally remain low (i.e. below 5 °C; SCHINDLER et al. 1974), summer water
temperatures in high arctic ponds may even exceed ambient air temperature
(DouGLas & SMOL 1994).
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Alert and Mould Bay are amongst the more studied regions in the Cana-
dian High Arctic, as logistical difficulties are eased by the presence of weather
stations. However, despite the volume of scientific investigation in each area,
little or no research has been undertaken on limnological questions. The only
published study focusing on freshwaters near Alert was primarily concerned
with paleolimnology (DOUBLEDAY et al. 1995), and no studies exist to date on
the limnology or paleolimnology of the Mould Bay region.

Due to poor soil development and the inhospitable climate, highly vege-
tated regions are exceedingly rare in the High Arctic. In the Mould Bay region,
however, the well-developed vegetation is strikingly different from the sparse
vegetative cover found across most of the Canadian High Arctic. Increases in
vegetation are expected to accompany predicted temperature and precipitation
increases in the High Arctic during the next century (MAXWELL 1997). As
such, the effect of vegetation on the limnology of the Mould Bay region may
provide insights into future conditions in other, less vegetated high arctic re-
gions.

Consequently, there were two primary objectives of this study. Firstly, to
establish the baseline limnological conditions in these previously uninvesti-
gated regions; and secondly, to evaluate the effects of greater vegetation and
soil depth on the limnology of high arctic lakes and ponds by contrasting the
regional water chemistry variability of our two study regions.

This study forms part of a larger project by members of our research group
to document the limnological conditions of the Canadian High Arctic islands
(e.g. ANTONIADES et al. 2003, MICHELUTTI et al. 2002 a, b, Lim et al. 2001,
DoucGLas & SmoL 1994), and will serve to augment our understanding of the
freshwaters of this little studied region. In addition, these data will be used in
determining diatom autecological characteristics that will form the basis for
future paleoenvironmental reconstructions from these regions.

Materials and methods

Site description

Alert

Alert (80°30"N, 60° 20" W), the northernmost human settlement on the planet, consists
of a Canadian military installation and a Meteorological Service of Canada (MSC) cli-
mate station. Alert is situated at an elevation of 62 m a.s.l. on the northeastern tip of El-
lesmere Island in the Queen Elizabeth Islands (Fig. 1). Local topography consists of
low rugged mountains that reach a maximum of 550 m a.s.l. The bedrock of the Alert
area is composed of Ordovician to Silurian sequences of carbonates and mudstones of
the Hazen and Danish River formations (CHRISTIE 1964).
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Fig. 1. Location map of Alert and Mould Bay in the Canadian Arctic Archipelago.

Alert has a cold, dry climate, with an annual mean temperature of —18.0 °C (Meteo-
rological Service of Canada 2002). The growing season is very short, averaging 28 de-
gree days per year above 5 °C. Alert is in the polar desert, and receives an average an-
nual precipitation of 154 mm (Meteorological Service of Canada 2002). Vegetation in
the area is sparse, and low herbaceous shrubs and mosses are the only plants capable
of surviving the harsh climate, lack of moisture, and poorly developed soils (EDLUND
& ALT 1989). While tundra ponds dominate most regions in the High Arctic, they are
not abundant near Alert. However, equally unusual among high arctic landscapes is the
concentration of large, deep lakes (i.e. 1-3 km diam., 10—50 m deep) present within a
30km radius of the Alert base (Fig.2).

Mould Bay

Prince Patrick Island is situated along the western fringe of the Queen Elizabeth Is-
lands (Fig. 1), with its north coast directly in contact with the permanent polar pack of
the Arctic Ocean. The MSC Mould Bay weather station (76° 14’N, 119° 20" W) was lo-
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Fig. 2. Map detail of Alert sampling sites.

cated along the southern coast of Prince Patrick Island from 1948 until its closure in
1995, and an automated station continues to record climate data at the site. Mould Bay
is situated in a region of low lying topography, with rolling hills that reach a maximum
elevation of 150 m. It is underlain by Devonian clastic sediments of the Melville Island
group as well as fine to medium-grained sandstones of the Jurassic to Cretaceous
Awingak and Isachsen formations (EVERETT 1968).

Predominant winds on Prince Patrick Island are from the northwest, bringing cold,
dry air from the Arctic Ocean. Mould Bay has an annual mean daily temperature of
-17.5°C, and a July mean daily temperature of +4.0 °C. Mould Bay is amongst the
driest areas of the High Arctic, with average annual precipitation of 111 mm per year,
and a growing season of only 27 days per year (Meteorological Service of Canada
2002).

The soils of the Mould Bay region are described as either tundra or polar desert
soils (EVERETT 1968). Drainage is typically poor, with a shallow permafrost depth that
prevents the drainage of surface waters. The soils are slightly acidic and extremely low
in organic matter, particularly below a depth of 1-2 cm, the typical depth of the upper
organic horizon (EVERETT 1968). Vegetation is extremely dense by high arctic stand-
ards, with a large percentage of lowland areas densely populated with mosses and
grasses. Upland areas in the region are only sparsely vegetated due to lack of soil de-
velopment caused by wind erosion and to the direct effects of wind (EVERETT 1968).

Sampling methods

Water samples were collected at 35 sites in the Mould Bay region between July 12 and
21, 1999 (Fig. 3), and at 30 sites in the Alert area between July 24 and August 7, 2000
(Fig. 2). Individual sites at Mould Bay were chosen in an effort to capture the max-
imum range of physical and limnological variation present in the region. At Alert, vir-
tually every accessible site within a 25 km radius of the base was included in the sam-
ple set. The largest site in the dataset, Upper Dumbell Lake, was sampled twice on the
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Fig. 3. Map detail of Mould Bay sampling sites.

same day at locations approximately 1.5 km apart to investigate the homogeneity of the
water chemistry. Two Alert sites (i.e. Lower Dumbell L. and Kirk L.) contained land-
locked char, while all other sites in the study are fishless.

Sampling methods followed those of our other high arctic studies (e.g. ANTONIA-
DES et al. 2003, MICHELUTTI et al. 2002 a, b, Lim et al. 2001, DouGLAs & SmoL
1994), and are summarized here. For each site, water temperatures were measured
using a hand held thermometer held at approximately 0.3 m depth. Conductivity
(COND) and pH were measured in a field laboratory within hours of sampling, using a
YSI Model 33 conductivity meter and a handheld Hanna pH meter, respectively. Lati-
tude and longitude were measured in the field with a handheld GPS receiver, while
elevation (ELEV) was estimated from 1:50,000 NTS topographic map sheets 89 B/4,
89 B/5S (Mould Bay), and MCE 140 (Alert).

Water samples were collected for 37 water chemistry variables, which were later
analyzed at the National Water Research Institute (NWRI) in Burlington, Ontario, ac-
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cording to standard protocols (Environment Canada 1994). Measured concentrations
were determined for silica (SiO,), metals (silver (Ag), aluminum (Al), barium (Ba),
beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe),
lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), strontium
(Sr), vanadium (V) and zinc (Zn)); and major ions: calcium (Ca), chloride (Cl), mag-
nesium (Mg), potassium (K), sodium (Na), sulfate (SO,), and dissolved inorganic car-
bon (DIC). Measurements of nutrients were made using water that was filtered through
0.45 um polytetrafluoroethylene (PTFE) filters, and comprised total dissolved phos-
phorus (TPF), soluble reactive phosphorus (SRP), total Kjeldahl nitrogen (TKN), am-
monia (NHj3), nitrite (NO,), nitrate-nitrite (NO3+NO,), and dissolved organic carbon
(DOC). Total phosphorus (TPU) was measured from unfiltered water. For analysis of
particulate organic carbon (POC) and nitrogen (PON), 150 ml of water was filtered
through Whatman glass microfiber filters pre-ignited at 500 “C, while 300 ml of water
was filtered for chlorophyll-a (CHLA) analysis. All filters were frozen immediately,
and stored in the dark between sampling and analysis. CHLA was extracted by addi-
tion of 90 % acetone, and the extract analyzed with a Beckman DU-62 spectrophoto-
meter. POC and PON were measured with a Perkin-Elmer 2400 CHN Elemental Ana-
lyzer. Due to a change in NWRI laboratory protocols, Mould Bay samples were fil-
tered using Whatman GF/F filters (particle retention 0.7 um), while Alert samples used
Whatman GF/C filters (particle retention = 1.2 um). As such, CHLA values are not di-
rectly comparable between Alert and Mould Bay sites. Total nitrogen (TN) was calcu-
lated as the sum of TKN, NO3;+NO, and particulate organic nitrogen (PON) (see Ap-
pendix 1).

Statistical analyses

The datasets were screened prior to statistical analysis, so that all variables that were
below detection limits in at least half of the sites were removed (i.e. Ag, Be, Cd, Co,
Cr, Mo, Ni, NO,, NO;+NO,, Pb, and V) from both datasets. For statistical analyses,
single measurements below detection limits were replaced with a value of half the de-
tection limit. At seven sites with no available CHLA measurement (i.e. MB-G, MB-JE,
MB-0O, MB-X, MB-Y, MB-AD), the median CHLA value was substituted for statistical
analysis. Two sites in the Alert dataset (i.e. A-A, A-B) had extremely high concentra-
tions of most chemical limnological variables, often two orders of magnitude greater
than all other measured values. Because chemical concentrations were generally very
low for most variables, these values dramatically affected the means of many varia-
bles. Thus, Alert median values are used in the discussion, as they better typify sites in
the dataset.

Covariation between limnological variables in the dataset was identified using
Pearson correlation matrices with Bonferroni adjustment (Tables 1 and 2). The primary
gradients controlling water chemistry were investigated by redundancy analysis (RDA)
and standardized principal components analysis (PCA) using CANOCO version 4 (TER
BraAK & SMILAUER 1998). A preliminary PCA was used to identify outliers, defined
as any sites that exceeded the 95 % confidence limit of the mean sample scores in the
dataset (i.e. A-A, A-B, MB-O, and MB-AF); (BIRKS et al. 1990). However, even when
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Fig. 4. Alert PCA biplot, with outlier sites removed. Inset indicates relative position of
outlier sites when included passively in PCA analysis.

included as passive sites in their respective analyses, these sites influenced the ordina-
tions to such a degree that they hampered the visualization of patterns among sites, and
were thus removed from the biplots entirely. Their positions on the PCA biplots rela-
tive to the other sites are shown inset in Figs.4 and 5.

A combined dataset from both study regions was analyzed with RDA in order to
determine to what degree water chemistry variation could be explained solely by geo-
graphy. Measured physical and chemical variables were analyzed using an explanatory
dataset that consisted of a binary environmental variable representing either Alert or
Mould Bay.
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Fig. 5. Mould Bay PCA biplot, with outlier sites removed. Inset as in Figure 4.

Results

Conductivity, pH and major ions

Thirty sites with diverse physical characteristics were sampled near Alert.
Sites ranged in elevation from 13 to 147m a.s.l. (mean = 65 m a.s.l.). Seven of
these sites were classified as lakes (i.e. >2m deep) that varied from ~450 to
1400 m in diameter. Water temperatures in the Alert sites ranged from 2 to
15 °C, and conductivity varied from 121 to 2000 uS cm™. Median conductivity
was 230uS cm’l, and except for two extreme sites (i.e. A-A: 2000 uS cm’l, and
A-B: 1650 uS cm’l), Alert conductivity values fell within a more restricted
range of (121-420 uS cm™). Alert sites were strongly alkaline, ranging from
pH 8.1 to 8.9 (mean = 8.4).
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At Mould Bay, 32 of 35 sites were classified as ponds, which were typi-
cally small (i.e. <50 m diam.) and less than 1 m deep. The majority were lo-
cated on low, emergent grassy plains, with 22 sites at or below 10m in eleva-
tion. Mould Bay water temperatures fell within the restricted range of 4 to
9.5 °C (mean = 6.4 °C), while conductivity values ranged from 25 to
530 uScm™ (mean = 115 uScm™). Mould Bay mean pH was 7.9, with a range
from 7.0 to 8.6.

Ca had the highest median concentration among major ions at Alert
(37.8 mgl’l, range = 18.8—-67.5 mgl’l). Mg, Na and K had medians of 9.3, 4.5,
and 0.5 mg17!, respectively, and each had a range of at least one order of mag-
nitude (see Appendix 1).

Median DIC was 26.3 mgl’l, with a relatively restricted range from 12.1 to
459 mgl’l. Cl had a much broader range (0.6-703 mgl’l), but a lower median
of 7.5 mgl™". SO, was typically lower (median = 3.2 mg1™), although concen-
trations ranged from 0.2 to 111 mg 1"!. Median concentrations at Alert were
Ca>Mg>Na>K, and Ca was the dominant cation at 28 of 30 sites. Two sites
were Na dominated (i.e. A-A, A-B) due to greatly elevated Na and Mg. Among
anions, median concentrations were DIC >Cl1>SQOy, and sites were generally
DIC dominated. However, at sites where Cl>SOy, often both variables had
very low concentrations and differences between the two were minimal.

Mould Bay Ca and Na had similar means (13.2 mg 17" and 12.9 mgl’l, re-
spectively). Ca ranged from 2.6 to 29.3 mgl’l, and Na from 1.6 to 98.8 mgl’l.
Mean Mg was 5.2 mg 1! (range = 0.8-22.8 mg 1Y, while mean K was
1.0 mg 1™ (range <0.2-4.0 mg17™"). CI had the highest mean (25.0 mg1™)
among anions. However, concentrations ranged from 3.2 to 212 mgl’l, and the
median value of 9.32 mgl’1 was more typical of Mould Bay sites. DIC concen-
trations reached a maximum of 22.5 mg 17" (mean = 9.4 mg 17"). SO, had the
lowest mean concentration among major anions (7.7 mg 1 range = 0.6—
38.4 mgl’l). Mean concentrations were Ca>Na>Mg>K, and Cl1>DIC>SOy,
although five different relative cation and six different anion concentrations
existed.

Metals

Similar to most chemical variables, metal concentrations were low in both the
Alert and Mould Bay datasets, with the exception of a small number of sites
with greatly elevated values. Many of the metals analyzed were below detec-
tion limits at the majority of sites and thus were removed from the datasets
prior to statistical analysis. At Alert, median Fe was 0.11 mgl’l, with a range
from 0.008 to 3.70 mg 17!, Alert Al values ranged from below the detection
limit (<0.1 mgl™) to 2.15mg1~, with a median value of 0.05 mg1~, while me-
dian Mn was 0.0057 mgl™" (range = 0.0013 —0.0605 mg1™).
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Sites in the Mould Bay dataset had higher metal concentrations than those
from Alert. Fe had a mean of 0.724 mg 1"! and a maximum concentration of
7.20 mgl’l. Al concentrations were generally low, and although mean Al was
0.12mg17}, the median was 0.03 mg1~!. Two Mould Bay sites were below the
Al detection limit of 0.1 mg 1", while the maximum was 1.49 mg 1"\, Mn
ranged from 0.0011 to 0.1480 mgl’l, with a mean of 0.0185 mgl’l.

Phosphorus, nitrogen, carbon and Chl-a

TPU at Alert ranged from 3.4 to 67.6 ug1~!, with a median of 9.1ug1™". Ac-
cording to WETZEL’s (1983) classification scheme, 17 % of Alert sites were ul-
tra-oligotrophic by TPU concentrations, 37 % were oligotrophic, 33 % were
mesotrophic, and 13 % were eutrophic. Mould Bay TPU ranged from 7.1 to
117.0 ug1™", with a mean of 16.5ug1™". By TPU concentrations, no Mould Bay
sites were ultra-oligotrophic, 28 % were oligotrophic, 66 % were mesotrophic,
and 6 % were eutrophic.

Five nitrogen measurements were made from each site (i.e. TKN, NHj,
NO;, NO3+NO;, and PON). NO; and NO3+NO, were below their respective
detection limit at the majority of sites in both study areas. Alert TN ranged
from 0.107 to 1.631 mg1~ (median = 0.465 mg17"). TKN varied from 0.086 to
0.736 mgl’l, with a median of 0.350 mgl’l. Alert mean PON was 0.032 mgl’1
(range = 0.015-0.286 mg 1Y), and median NH3 was 0.022 mg 17 although
NH; was below detection limits (i.e. 0.005 mgl’l) at 14 sites.

Mean Mould Bay TN was 0.616 mg1™" (range = 0.206 to 1.430 mgl™), and
TKN concentrations ranged from 0.160 to 1.360 mgl’1 (mean = 0.515 mg 1.
PON concentrations were also highly variable, ranging from 0.030 to
0.684 mg 1! (mean = 0.096 mg17™"), while NH; ranged from <0.005 to
0.122 mgl’1 (mean = 0.035 mgl’l). TN : TPU ratios ranged from 4:1 to 104:1
at Alert sites, with a mean of 46: 1, while at Mould Bay the mean was 49: 1,
with ratios ranging from 9:1 to 101: 1.

Alert Chl-a concentrations were consistently low, ranging from below the
detection limit of 0.1pg 1" to a maximum of 2.6 ug 1”! (median = 1.0 ug 1.
POC varied from 0.108 to 3.090 mg 1"! (median = 0.328 mg 1Y), while DOC
ranged from 0.6 to 6.1 mg1~", with a median of 2.7mg1~". POC: CHLA ratios
were calculated to assess the potential carbon sources, as ratios greater than
100 : 1 suggest allochthonous sources of POC (EPPLEY et al. 1977). Median
POC : CHLA (348:1) implied that the majority of POC at Alert sites was al-
lochthonously derived, with values ranging from 106:1 to 1818 : 1.

Due to analytical problems, seven Mould Bay sites have no measured Chl-
a values. At a further 10 sites, Chl-a was below the detection limit of 0.1 ugl’l.
At the 18 sites with available Chl-a measurements, mean Chl-a was 0.8 ug 1
POC and DOC values reflected higher catchment inputs of detrital matter.
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POC ranged from 0.375 to 7.090 mg 1™ (mean = 0.901 mg1™"), while DOC
ranged from 1.1 to 13.7 mgl’1 (mean 6.7 mgl’l). POC : CHLA ratios calculated
at the 18 sites in the Mould Bay dataset with available Chl-a values again sug-
gested terrestrial sources for POC, with a large range of values from 174:1 to
8800:1 (mean =1289:1).

Multivariate analyses

Several iterations of RDA and PCA were used to investigate patterns of varia-
tion in the water chemistry datasets. RDA was run to determine the degree to
which a strictly geographic factor could account for differences between the
Alert and Mould Bay datasets, and indicated that classification by island ex-
plained 16.4 % of the water chemistry variation. The variables most highly
correlated with the first RDA axis were, as expected, those for which one of
the study regions had distinctively higher concentrations. High DIC, Ca, and
pH were most strongly associated with Alert. High concentrations of TPF and
DOC were most strongly linked with Mould Bay.

PCA analysis indicated that there were two primary gradients in each envi-
ronmental dataset. The first two axes of the Alert PCA explained 47.6 % of the
water chemistry variation, with eigenvalues of 0.276 and 0.199, respectively.
Conductivity-related variables and nutrients (i.e. Mg, Sr, TKN, DOC, TN, and
Cond) most strongly controlled the first axis. The second axis was most
strongly correlated with Al, Fe, Zn, and Mn, and thus represented a gradient of
metal concentrations.

The first two axes of the Mould Bay PCA had eigenvalues of 0.302 and
0.188, respectively, and collectively explained 49.0 % of the variation in the
dataset. The first axis was again controlled by conductivity-related variables
(i.e. Sr, Ca, Cond, K, Mg, and DIC), while the second axis represented a nutri-
ent gradient, and was correlated with NH3, TN, SRP, and TPU.

Discussion

Conductivity, pH, and major ions

The majority of the sites present in the study were shallow tundra ponds, how-
ever physical characteristics (Appendixes 1, 2) differed between Alert and
Mould Bay. Roughly one quarter of Alert sites were lakes, compared with fe-
wer than one in ten at Mould Bay. Although the greater proportion of lakes in
the Alert dataset may partially account for differences in nutrient and solute
concentrations between Alert and Mould Bay, geology and vegetation appear
to play the largest role in determining regional water chemistry. Differences in
trophic status between Alert and Mould Bay sites can be attributed to vegeta-
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tional regime, while differences in ionic chemistry resulted largely from bed-
rock differences. High arctic water bodies are typically alkaline, dilute, and
oligotrophic. While Alert sites largely conformed to these trends, the trophic
status and ionic chemistry of Mould Bay sites were distinct among Canadian
high arctic regions.

Conductivity at both Alert and Mould Bay was within ranges found in
other high arctic limnological studies (i.e. ANTONIADES et al. 2003, Mi-
CHELUTTI et al. 2002 a,b, HAMILTON et al. 2001, Lim et al. 2001, VEZINA &
VINCENT 1997, DouGLAs & SMoL 1994). No significant correlation was iden-
tified between conductivity and elevation at either Alert or Mould Bay, a cor-
relation that previous high arctic studies have inferred represent distance from
the ocean (LM et al. 2001, MICHELUTTI et al. 2002 b). However, any relation-
ship between conductivity and elevation at Alert may have been obscured by
the fact that the four largest, most dilute lakes also had the lowest elevations.
At Mould Bay, the eight sites closest to the Arctic Ocean had the eight highest
conductivity values, despite a range of elevations.

The predominance of alkaline sites across the Canadian High Arctic results
from the carbonate bedrock and glacial materials that dominate most of the re-
gion. In tundra ponds, pH may also be elevated by photosynthesis during the
extended daylight of the arctic summer. pH typically ranges from 7 to 8.5, and
values exceeding 9 have been reported (VEZINA & VINCENT 1997, HAMILTON
et al. 2001). Alert sites were among the most alkaline reported from the High
Arctic, while Mould Bay sites, which were situated on non-calcareous sand-
stones, were circumneutral to slightly alkaline due to the influence of carbon-
ate surficial materials.

Trends in major ion concentrations at Alert were broadly similar to those
observed in other high arctic surveys, however Mould Bay’s major ions dif-
fered from other high arctic sites. Alert sites had the highest DIC and second
highest Ca yet recorded in a limnological survey in the Canadian High Arctic,
resulting from the calcium carbonate bedrock underlying the Alert area. Sim-
ilar Ca concentrations were also recorded farther north on Ward Hunt Island
(VILLENEUVE et al. 2001). Conversely, Mould Bay mean Ca and DIC were at
or among the lowest found to date in a high arctic limnological survey, re-
flecting that Mould Bay is the lone study site not dominated by calcareous
bedrock (ANTONIADES et al. 2003, MICHELUTTI et al. 2002 a, b, HAMILTON
et al. 2001, Lim et al. 2001). Na and Cl were at the upper end of typical high
arctic ranges at both Mould Bay and Alert, reflecting the greater proximity of
sites in this study to the ocean. Concentrations of other major ions (Mg, K, and
SO,4) were within previously identified ranges in the Canadian High Arctic and
normal ranges for Canadian freshwaters (ANTONIADES et al. 2003, MICHE-
LUTTI et al. 2002 a, b, HAMILTON et al. 2001, Lim et al. 2001, DouGLAS &
SmoL 1994, McNEELY et al. 1979). Individual sites with elevated Na, Cl, Mg,
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and SO4 were either situated within very short distances of the ocean (i.e. MB-
I, MB-JE, MB-JW, MB-AG, MB-AH), or may have been impacted by anthro-
pogenic sources (i.e. A-A, A-B).

K in tundra ponds may be increased by leaching from vascular plant litter,
particularly during spring melt (PRENTKI et al. 1980, CORNWELL 1992). High
individual K concentrations have been attributed to higher catchment vegeta-
tion (LM et al. 2001, MICHELUTTI et al. 2002 a); however, despite vegetation
levels that far exceed any observed in these studies, Mould Bay K remained
low, and concentrations were similar to those from Alert.

Na:K in natural waters is typically between 2:1 and 3:1 (MCNEELY et al.
1979). However, median Alert Na: K was 9: 1, while the ratio from Mould Bay
was 4 :1. The ratio of mean Na: K in previous high arctic surveys has ranged
from 8:1 to 13:1, and appears to increase with decreasing vegetation levels.
The highest Na: K in the High Arctic was from Isachsen, Ellef Ringnes Island,
a region almost completely devoid of vegetation (ANTONIADES et al. 2003),
while the lowest value was from Mould Bay, the most lushly vegetated region
among these studies. By comparison, studies from the Canadian and Alaskan
Arctic mainland had Na:K ratios ranging from 1 to 5 (GREGORY -EAVEs et al.
2000, RUHLAND & SmoL 1998, PIENITZ et al. 1997 a,b), and a survey from
Victoria Island, the farthest south of the Canadian Arctic Islands, had a ratio of
2: 1. High ratios from around the High Arctic relative to lower arctic sites may
be indicative of extremely low K contributions resulting from the depauperate
vegetation regime at these sites.

Metals

Similar to most high arctic datasets, metals in both study areas were present in
low concentrations. A notable exception was the high mean Fe at Mould Bay,
which was above the range considered normal for Canadian waters
(<0.5 mgl’l; MCcNEELY et al. 1979), although a broad range of concentrations
was present (0.083 to 7.200 mg 1™Y). While extreme sites in the dataset in-
creased this mean (median Fe = 0.267 mglfl), 12 sites still had Fe concentra-
tions that exceeded 0.5 mgl’l. Weathering of ferric minerals in the sandstones
of the Mould Bay area may be responsible for these elevated Fe levels. In ad-
dition, while mean Fe at Alert was within typical high arctic and Canadian
ranges, six sites in the dataset had values above 0.5 mg 1. Elevated Fe con-
centrations have been observed at other high arctic sites in contact with pyrite-
rich shale (ANTONIADES et al. 2003, HAMILTON et al. 2001). At Alert, crystal-
lized pyrite was observed between bedrock joints, and provided a potential
source of Fe to Alert sites.
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Nutrients, Chl-a, and trophic status

Broad ranges of TPU concentrations were present in both regions, however at
Alert the majority of sites was oligotrophic to meso-oligotrophic, while at
Mould Bay the majority of sites were mesotrophic. Mean Mould Bay TPU ex-
ceeded those from all other Canadian High Arctic studies (MICHELUTTI et al.
2002 a,b, HAMILTON et al. 2001, Lim et al. 2001, DouGLAS & SMOL 1994) ex-
cept Isachsen, Ellef Ringnes Island, which was heavily influenced by phos-
phatic shale (ANTONIADES et al. 2003). TPU values similar to Mould Bay have
also been reported from lakes on Spitsbergen (VAN DONK et al. 2001). The de-
cay of organic matter from lush vegetation provides a potential source of in-
creased phosphorus supply to Mould Bay sites not available in other, less veg-
etated high arctic locations.

Alert mean TKN was higher than any previously reported in a high arctic
survey, but was further exceeded by mean TKN at Mould Bay. Mould Bay
mean TN and NHj were higher than those of all previous high arctic surveys,
and mean PON was only exceeded by that from Ellef Ringnes Island (ANTO-
NIADES et al. 2003). TKN values greater than 0.5 mgl’1 generally indicate
high organic inputs (MCNEELY et al. 1979). Although there was great between-
site variability, mean TKN and concentrations at 17 of 35 Mould Bay sites ex-
ceeded this figure. The higher TPU, TKN and PON levels at Mould Bay are a
reflection of high vegetation levels, which provide an abundant source of det-
rital organic matter.

Ninety-eight percent of the sites in this study were classified as oli-
gotrophic by Chl-a concentrations, which is typical of high arctic water bo-
dies. Alert Chl-a concentrations, while low, were somewhat higher than meas-
urements from our other high arctic studies. However, recent methodological
changes may hamper direct comparisons of Chl-a concentrations with earlier
published figures (see Methods). Regardless, the consistently low Chl-a con-
centrations in both study areas are indicative of low productivity in the water
column, and were similar to those reported from the Canadian High Arctic and
from Spitsbergen.

TN:TPU ratios were calculated in order to investigate the degree to which
phytoplankton productivity may be limited by nitrogen or phosphorus. High
arctic lakes are typically dominated by benthic communities, which can ac-
count for over 95 % of a site’s phototrophic productivity (VEZINA & VINCENT
1997, VILLENEUVE et al. 2001). In addition, nutrients and major ions within
arctic cyanobacterial mats can be concentrated by over an order of magnitude
when compared with concentrations in the overlying water column (VILLE-
NEUVE et al. 2001). As such, estimates of nutrient limitation using samples
taken from the water column are applicable only to phytoplankton.
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TN : TP ratios suggested P-limitation (i.e. 217:1) at 93 % of Alert sites and
97 % of Mould Bay sites. Strong P-limitation was indicated at the majority of
sites in the dataset, as 67 % of Alert sites and 83 % of Mould Bay sites ex-
ceeded 30: 1. Only three sites (A-E, UDL, MB-AF) had ratios suggesting
N-limitation. Of these, two sites (i.e. UDL, MB-AF) had anomalously high
concentrations of particulate matter and low TN : TP ratios, which likely result
from resuspended sediment and may not be reflective of N-limitation.

Phosphorus and nitrogen were present in high concentrations at Mould Bay
relative to other high arctic sites, yet Chl-a concentrations remained at the low
end of High Arctic ranges. The importance of nitrogen as a limiting factor is
often underestimated in arctic and oligotrophic lakes (LEVINE & WHALEN
2001, ELSER et al. 1990). In our study, dissolved inorganic nitrogen species
were at or below detection limits in many sites at both regions. As such, we
performed a series of linear regressions to investigate the response of Chl-a to
increases in TPU, TN, and TKN (Fig. 6), and compared these to published
equations for CHLA : TP (i.e. SMITH 1982, DiLLON & RIGLER 1974). Despite
the suggestion of strong P-limitation by nutrient ratios, Chl-a and TPU were
not significantly correlated (p<0.05), and there was no significant relation be-
tween Chl-a and TN or TKN. The regression equations from the literature con-
sistently overestimated Chl-a responses to increases in TPU in our sites
(Fig. 6 a, b). This supports the findings of FLANAGAN et al. (2003), who sug-
gested that in arctic lakes, smaller increases in algal biomass result from a
given increase in phosphorus than would occur in temperate sites. However,
the lack of a relationship between Chl-a and N or P suggests that other factors
may be controlling phytoplankton productivity at our sites. Moreover, as the
majority of the production in these sites is from the periphyton, open water
Chl-a concentrations are not measuring periphytic production. The precise role
of nutrients in regulating phytoplankton productivity in these and other high
arctic sites is thus unclear, and warrants future investigation through bioassays
and fertilization experiments.

Alert’s median POC concentration was similar to those found at typical,
sparsely vegetated high arctic sites, while the Mould Bay median POC con-
centration exceeded those reported from all high arctic regions except Ellef
Ringnes Island, where resuspension of sediments was a confounding factor
(ANTONIADES et al. 2003). POC : CHLA ratios were significantly lower at
Alert than those calculated in other high arctic surveys (ANTONIADES et al.
2003, MICHELUTTI et al. 2002 a, b, LiM et al. 2001), and may reflect the
slightly elevated Chl-a concentrations found at Alert. Mean POC: CHLA at
both study areas suggests that the majority of POC is derived from allochtho-
nous, and thus likely terrestrial sources, a finding similar to all previous high
arctic limnological surveys. POC: CHLA ratios were not calculated at Mould
Bay sites with no measured CHLA concentration; however, as ten of these
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Fig. 6. Individual regressions of Chl-a against TPU, TN and TKN. a) sites fail to segre-
gate according to SMITH’s (1982) regression equations for TN : TP = 10 and 25. b)
includes Chl-a: TP regression of DILLON & RIGLER (1974).

sites were below the CHLA detection limit, it is likely that our mean value un-
der-represents the actual value for Mould Bay sites. Despite this, ratios from
Mould Bay were much higher than those from Alert and elsewhere in the High
Arctic, further reinforcing the sensitivity of these sites to external detrital in-
puts, and the influence of the relatively lush vegetation in the Mould Bay area
relative to other, more sparsely vegetated high arctic regions.

Alert DOC concentrations were higher than those from Spitsbergen (ELLIS-
EvaNs et al. 2001) and similar to those found elsewhere in the Canadian High
Arctic, with the exception of Ward Hunt Lake, where DOC exceeded the max-
imum found at Alert (VILLENEUVE et al. 2001). This emphasizes the impor-
tance of individual catchment characteristics in determining high arctic DOC.

Mould Bay DOC greatly exceeded all values previously reported from our
high arctic surveys. Concentrations were similar to those reported at or near
treeline from the subarctic Northwest Territories and arctic sites in northern
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Russia (PIENITZ et al. 1997 a, DUFF et al. 1999); however, DOC remained far
lower than values reported from Alaska and western arctic Canada (GREGORY -
EAVES et al. 2000, PIENITZ et al. 1997b). High arctic freshwater sites are typi-
cally low in DOC and thus highly sensitive to ultraviolet radiation (VINCENT
& PiENITZ 1996). Predicted future increases in ultraviolet radiation are ex-
pected to further stress high arctic lakes and ponds. However, high arctic veg-
etation cover is also predicted to increase in response to higher temperatures
and greater precipitation. High DOC at Mould Bay resulting from terrestrial
organic inputs suggest that the future effects of increased UV radiation on
these water bodies may be moderated by higher DOC concentrations.

Outlier sites

The water chemistry of several sites was distinct from all others in the study.
A-A and A-B had water chemistry characteristics that were distinctly different
from all other sites in the Alert dataset. Site A-A had the highest concentration
in the dataset for 23 measured chemical variables, including Cl, SO,4, Mg, Na,
and K, while A-B had the second highest concentration of these five variables.
These sites were among the closest to the Alert military base, and were located
short distances from roads used to service outlying components of the installa-
tion. This proximity was the only distinguishing feature of these ponds; as
such their elevated concentrations likely result from the construction and
maintenance of these roads.

The TPU concentration of UDL (mean = 34.6 ug 1™") was the highest
among non-impacted sites in the Alert dataset. The TPF concentration at UDL
(2.6 ugl’l) was not comparably elevated, and was, in fact, similar to that meas-
ured at other lakes in the dataset. Turbid waters resulting from high winds and
large waves were observed while sampling UDL. The adjacent LDL, similar
in size and general characteristics, was sampled during calm conditions, and
had a TPU concentration of only 4.1 ug 1™\, In addition, the TN : TP ratio of
UDL (5:1) closely approximates that of oligotrophic lake sediment (i.e. 3:1,
DowNING & McCAULEY 1992). As such, high TPU at UDL is likely reflective
of the contribution of resuspended particulate phosphorus.

MB-AF TPU (117.0ug1™") was the highest amongst the Mould Bay sites. It
was the largest site sampled at Mould Bay, and was sampled under conditions
similar to UDL. POC and PON were also elevated at MB-AF, however TPF
barely exceeded the Mould Bay mean (9.3 vs. 8.5 ug1™). MB-AF also had the
lowest TN : TP ratio among the Mould Bay sites. Classifications of MB-AF
and UDL as eutrophic (by TPU) are somewhat improbable given the trophic
conditions of all other sites in the region. The similarities between these sites
imply that measured TPU concentrations include resuspended particulate ma-
terial, and are not indicative of increased trophic levels.



Limnology of two Canadian High Arctic regions 505

Tundra ponds are more sensitive than lakes to increasing concentration of
solutes from external inputs and via evaporative concentration. Because of this
difference in physical characteristics, concentrations of many water chemistry
variables differed greatly between lakes (n = 7) and ponds (n = 23) in the Alert
dataset. A series of simple t-tests indicated that 17 limnological variables dif-
fered significantly (p<0.05) between lakes and ponds (i.e. POC, PON, DOC,
DIC, SiO,, NH3, TKN, TN, TPF, SOy, Ca, Mg, Li, Sr, Cond, T, and pH). Con-
centrations of these limnological variables were higher in ponds than in lakes,
as expected. The difference in the chemical limnology between lakes and
ponds is indicative of the degree to which their concentrations are dependent
on external inputs. Because of their small volumes, tundra ponds have much
lower capacities for dilution of allochthonous material, and are thus highly
sensitive to allochthonous deposition of solutes and nutrients. Canonical Var-
iates Analysis (CVA) indicated that the differences in concentrations of these
17 variables accounted for 71.7 % of water chemistry differences between lakes
and ponds. The variables that most strongly differentiated between lakes and
ponds were, in descending order, TKN, DIC, POC, PON, and Mg. A second
CVA indicated that these five variables alone explained 63.7 % of the water
chemistry differences between lakes and ponds.

Multivariate analysis

Lakes and ponds were divided mainly into two groups along Alert PCA axis 1,
reflecting the difference in the evaporative concentration between the two site
types. Accordingly, the arrows representing site diameter and the conductivity-
related variables are directly opposite to each other along the axis. The higher
degree of variability in the chemical compositions of ponds was reflected in
their wide distribution along both PCA axes. Lakes, which were consistently
low in solute concentrations, more densely clustered than ponds, and are sit-
uated in the left-centre of the ordination.

The Mould Bay PCA illustrates the effect of distance from the ocean on
the chemical composition of sites. High conductivity sites, situated near the
ocean, are located in the right half of the ordination. Proximity to the ocean
appears to override site size as the primary determinant of solute concentra-
tions, however, diameter is inversely related to nutrient and particulate con-
centrations along PCA axis 2.

Conclusions

The data presented in this study constitute the first documentation of baseline
limnological conditions for lakes and ponds in the Alert and Mould Bay re-
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gion. This information is crucial, as these systems are likely to undergo dra-
matic changes in the future due to changing climatic conditions. The different
limnology and higher DOC concentrations of the Mould Bay region relative to
other, less vegetated sites may provide examples of future limnological condi-
tions that may be expected elsewhere in the High Arctic under the warmer,
wetter climate regimes and more densely vegetated ecosystems predicted
within the next century.
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Limnology of two Canadian High Arctic regions
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Limnology of two Canadian High Arctic regions
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